
 

Journal of Advanced Life Sciences and Technology  
ISSN 3095-1724 
Volume 12 Issue 4 

October– December 2024 
Impact Factor: 7.06 

Enquiry: contact@continentalpub.online 
Published by Continental Publication | https://continentalpub.online/index.php/life-sciences 

 

 

Copyright: © 2024 Continental Publication 

 
9 

INVESTIGATING OPERATIONAL SEMANTICS: THE 
FUNDAMENTALS OF PROGRAMMING 

 
 

Hiroshi Yamamoto 
School of Computing, University of Tokyo, Tokyo, Japan 

 
1.1  Introduction   
Programming is a major tool for 
computerization and there is need to 
understand its basics; the how, the 
effects and the assertions. The syntax of 
a program deals with the grammatical 
structure of the program while the 
semantics deals with the meaning of 
grammatically correct programs. For 
instance, consider the following 
statement:   c:=a; a:=b; b:=c      
Expression(i)   
A syntactic analysis of the program 
statement given in Expression (i) above 
consists of three statements separated 
by ‟;‟. Each of these statements has a 
variable, followed by an assignment 
statement,‟:=‟, and an expression 
which is also a variable. Whereas, the 
semantics of the statement expresses 
that the program is to exchange the 
values of variables a and b and setting c 
to the final value of b (Nielson and 
Nielson, 2007).  
A semantics for a programming 
language models the computational 
meaning of each program (Moses, 
2006). It is also concerned with the 
rigorous mathematical study of the 
meaning of programming languages 
and models of computation. Semantics 
can be used to understand a particular 
language and as a foundation for 

 Abstract:  Computer programming is a fundamental tool in 
the world of computerization, and a solid grasp of its 
foundational aspects, including syntax, semantics, and their 
implications, is essential. Syntax addresses the grammatical 
structure of a program, while semantics delves into the 
meaning of programs that adhere to grammatical 
correctness. Consider, for instance, the statement: "c: =a; 
a:=b; b:=c" (Expression(i)). A syntactic analysis of Expression 
(i) reveals three distinct statements, each separated by 
semicolons. Each statement consists of a variable, an 
assignment operator (":="), and an expression, which is also 
a variable. In contrast, the semantics of this statement 
dictates the exchange of values between variables a and b, 
with c ultimately receiving the value of b (Nielson and 
Nielson, 2007). Semantics, in the context of programming 
languages, encompasses the computational meaning of each 
program. This field is deeply involved in the rigorous 
mathematical examination of programming language 
meanings and models of computation (Moses, 2006). 
Semantics serves multiple purposes, from understanding the 
intricacies of specific programming languages to 
establishing a foundation for verifying the properties of 
particular programs. Additionally, it facilitates the 
expression of design choices and provides insights into the 
interaction between various language features (Sewell, 
2008). This paper explores the vital concepts of syntax and 
semantics in computer programming, shedding light on 
their significance and practical applications. 
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proving properties of particular programs. It can also be used as a tool for expressing design choices, 
understanding language features and how they interact (Sewell, 2008).  
There are three major levels of semantics namely static semantics which models compile-time checks, 
dynamic semantics which models run-time behaviour and semantic equivalences between programs 
which may abstract from details of models (Moses, 2006). Dynamic semantics is further subdivided 
into operational semantics, denotational semantics and axiomatic semantics (Nielson and Nielson, 
2007; Hennessy, 1991). While operational semantics deals with how the effect of a computation is 
produced, denotational semantics models the meanings by mathematical objects that represent the 
effect of executing the constructs and axiomatic semantics deals with the specific properties of the effect 
of executing the constructs. The formal semantics of a language is given by a mathematical model that 
describes the possible computations described by the language. It is concerned with rigorously 
specifying the meaning, or behaviour, of programs and pieces of hardware among others (Nielson and 
Nielson, 2007; Plotkin, 1982).  
Formal semantics is capable of revealing ambiguities and also forms the basis for implementation, 
analyses and verification of programs.   
2.1  Basic Concepts of Operational Semantics (OS)  
An operational explanation of the meaning of a construct tells how to execute it (Abramsky and Hankin, 
1987; Aho, Sethi and Ullman, 1986; Jones, 1980). To execute a sequence of statements separated by „;‟ 
as seen in Expression (i), the individual statements are being executed one after the other and from left 
to right. To execute a statement consisting of a variable followed by the assignment operator „:=„ and 
another variable, the value of the second variable is determined and assigned to the first variable. The 
execution of a program in a state where a has the value 3, b the value 5 and c the value 0 is done by 
the following derivation sequence:  

  (i).  c:=a; a:=b; b:=c,   [a→3, b→5, c→0] 〉   (ii).  a:=b; b:=c,    [a→3, b→5, 

c→3] 〉   (iii).  b:=c,      [a→5, b→5, c→3] 〉  

  (iv).        [a→5, b→3, c→3] 〉  
In the first step, the statement c:=a is executed and the value of c is changed to 3 whereas those of a 
and b are unchanged. The remaining program is now a:=b; b:=c. After the second step, the value of a 
is 5 and we are left with the program b:=c. The third and final step of the computation changes the 
value of b to 3. Hence, the initial values of a and b have been exchanged, using c as a temporary variable. 
When this kind of operational semantics is formalized, it is often referred to as structural operational 
semantics (or small-step semantics). An alternative operational semantics is called natural semantics 
(or big-step semantics) and it differs from the structural operational semantics by hiding more 
execution details. Figures 1 and 2 show the rules for both structural operational semantics and natural 
semantics respectively.    
2.2 Structural Operational Semantics (SOS)  
Structural operational semantics (SOS) provides a framework to give an operational semantics to 
programming and specification languages. SOS generates a labelled transition system, whose states are 
the closed terms over an algebraic signature, and whose transitions between states are obtained 
inductively from a collection of so-called transition rules of the form:   premises    conclusion   
Structural operational semantics provides transition rules for the evaluation of expressions and 
execution of commands as seen in Figure 1. If the number of premises is zero, then, the line is omitted, 
and we refer to the rule as an axiom. (Aceto, Fokkinky and Verhoefz, 2001; Slonneger and Kurtz, 1995). 
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(1) [ass ]   〈x:=a,s〉→ s(x→A[a]s) sos 

(2) [skip ]   〈skip, s〉 → s  
sos 

        〈S , s〉 → 〈S' , s'〉  
1 1 

(3) [ comp 1 ] 〈S ; S , s〉→   〈S' ; S , s'〉 sos 1 2 1 2 

        〈S , s〉→  s'  
1 

(4) [comp2 ] 〈S ; S , s〉→   〈 S , s'〉 sos 1 2 2 
  
tt 

(5) [if ]   〈if b then S else S ,s〉 →  〈S , s〉=  if B[b]s = tt sos 1 
 2 1 ff 

(6) [if ]   〈if b then S else S ,s〉 →  〈S , s〉=  if B[b]s = ff sos 1 
 2 2 

(7) [while ]  〈while b do S, s〉→  〈if b then (S; while b do S) else skip s

〉  
sos 
Note: sos means Structural Operational Semantics.   
Figure 1: Structural Operational Semantics  (Source: Nielson and Nielson, 
1999).   

The role of a statement in „While‟ is to change the state. Given that x is bound to 5 in a state, s, and the 
statement x := x + 1 is executed, then, a new state, s0, where x is bound to 6 is produced. So, while the 
semantics of arithmetic and boolean expressions only inspect the state in order to determine the value 
of the expression, the semantics of statements will modify the state as well. (Nielson and Nielson, 1999; 
Despeyroux, 1986).   
For the language „While‟, one can easily specify both kinds of operational semantics and they will still 
be equivalent. For the two kinds, the meaning of statements is specified by a transition system which 
has two types of configurations as shown below:   

S, s〉representing that the statement S is to be executed from the state s, and s  representing a final 
state.  
The transition relation will then describe how the execution takes place. The difference between the 
two approaches to operational semantics amounts to different ways of specifying the transition 
relation. An example of how SOS specifies the translation relation is given below:  
Consider the same example earlier given in Expression (i):  (c:=a; a:=b); b:=c  
Let   s0 be the state that maps all variables except a and b to 0  
Let   s0 a =3 and s0 b =5  
Then, the derivation sequence is as follows:  

(i) 〈(c:=a; a:=b); b:=c, s0〉  

(ii) 〈a:=b; b:=c, s0[c→3]〉  

(iii) 〈b:=c, (s0[c→3])[a→5]〉 (iv)    〈((s0[c→3])[a→5])[ b→3]〉  
  
Each of the above steps has corresponding trees that explain why they take place. For step (i):  

  〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉  
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The derivation tree is shown below:  

      〈c:=a, s0〉→ s0[c→3]  

    〈c:=a; a:=b),s0〉→ 〈a:=b,s0[c→3]〉  

  〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉  
The above tree has been constructed from the axiom [ass ] and [comp1 ] (from Figure 1). Hence, it is 
seen here that  
sos sos details of execution are explained and this is why SOS is called small-step semantics.   
2.3 Natural Semantics (NS)   
In a natural semantics, the relationship between the initial and the final state of an execution is of 
utmost concern. As mentioned earlier, it is defined as a binary relation between configurations as 
explained under SOS. Transitions from the initial pair to the terminal state are denoted by:  

  〈S, s〉 → s'.  
The execution of S from s will terminate and the resulting state will be s'. Natural Semantics is defined 
by the set of derivations or rules shown in Figure 2 (Nielson and Nielson, 1999; Bakel, 2002). To show 
the translation relation of natural semantics, consider the same example earlier given in Expression (i):  
(c:=a; a:=b); b:=c Let  s0 be the state that maps all variables except a and b to 0  
Let   s0 a =3 and s0 b =5  
Then, the derivation sequence is as follows:  
  

  〈c:=a, s0〉→ s1    〈a:=b, s1〉→  s2  

    〈c:=a; a:=b), s0〉→  s2   〈b:=c, s2〉→  s3  

      〈(c:=a; a:=b); b:=c, s0〉→  s3      

From the above derivation, the following abbreviations are used:  s1 = s0[c→3]   s2 = s1[a→5]  
  s3  =  s2[b→3]  

The derivation tree has three leaves denoted as: 〈c:=a, s0〉→  s1,  〈a:=b, s1〉→ s2  and   

〈b:=c, s2〉→  s3, corresponding to the tree applications of the axiom [assns].   
  
AYORINDE, Ibiyinka Temilola                                                                                                                                 21  
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(1)  
(2)  
 
   
(3)  
 
   
(4)  
 
   
(5)  
 
   
(6)   
(7)  
  

[ass ]    
ns 
[skip ]   
ns 
    
[comp ]   
ns 
    
tt 
[if ] 
   
ns 
    
ff 
[if ] 
   
ns 
    
tt 
[while ]  
ns ff 
[while ]  
ns 
Note: ns 
means 
Natural 
Semantics. 
  
  
  

〈x:=a,s〉→ s(x→A[a]s)  

〈skip, s〉 → s  

〈S , s〉 → s', 〈S , s'〉 → s''  
1 2 

〈S ; S , s〉→ s'‘  
1 2 

〈S , s〉 → s‘_______   if B[b]s = tt  
1 

〈if b then S else S ,s〉 → s‘  
1  2 

  〈S , s〉 → s‘_______   if B[b]s = ff  
2 

〈if b then S else S ,s〉 → s‘  
1  2 

〈S , s〉 → s‘, 〈while b do S, s'〉→ s'‘    if B[b]s = tt  
1 

  〈while b do S, s〉→ s'‘   

〈while b do S, s〉→ s   if B[b]s = ff  
  
Figure 2: Natural Semantics (Source: Nielson and Nielson, 
1999).   

  
The rule [compns] has been applied twice. One instance is:   

  〈c:=a, s0〉→ s1,  〈a:=b, s1〉→  s2  

    〈c:=a; a:=b), s0〉→  s2  

This instance has been used to combine the leaves 〈c:=a, s0〉→ s1 and 〈a:=b, s1〉→s2 with the 

internal node labelled 〈c:=a; a:=b), s0〉→  s2. The other instance is:  

  〈c:=a; a:=b), s0〉→  s2, 〈b:=c, s2〉→  s3  

 
    〈(c:=a; a:=b); b:=c, s0〉→  s3  

This instance has been used to combine the internal node 〈c:=a; a:=b), s0〉→  s2 and the leaf   

〈b:=c, s2〉→  s3 with the root 〈(c:=a; a:=b); b:=c, s0〉→s3.  
Hence, this example shows that, unlike SOS, NS actually hides certain details and thus, the name big-
step semantics. The transition between states is of utmost concern here. Despite the difference in the 
specification of the transition relation used, both SOS and NS gave equivalent results. Also, the 
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examples given also affirms that  Formal semantics helps to proof the correctness of programs. (Ganor 
and Juhasz , 2007).   
3. Conclusion   
This paper has been able to show the interest of operational semantics by enumerating how the effect 
of a computation is produced. While structural operational semantics has described how the individual 
steps of the computations take place, natural semantics has described how the overall results of 
execution are obtained. I hereby recommend that “Formal Semantics” should be taken as a course by 
computer science students in tertiary institutions so as to enhance a better performance in their 
programming work thereby enhancing the production of indigenous software that meets the specific 
needs of the people in our community.   
References   

Abramsky, S. and Hankin, C. (1987).Abstract Interpretation of Declarative Languages, Ellis  Horwood.  

Aceto, L., Fokkinky, W. and Verhoefz, C. (2001). Structural Operational Semantics  

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). Compilers: Principles, Techniques and Tools, Addison-
Westley. 

Bakel, S. V. (2002). Operational Semantics.Course Notes. Department of Computing Imperial College 
of Science, Technology and Medicine  

Despeyroux, J. (1986). Proof of translation in natural semantics, Proceedings ofsymposium on logic in 
Computer Science, Cambridge, Massachusetts, USA.  

Ganor , R. and Juhasz , U. (2007). Operational Semantics.Class notes for a lecture given by  MoolySagiv, 
Tel Aviv University,  24/5/2007  

Hennessy, M. (1991). The Semantics of Programming Languages: An Elementary Introduction using 
Structural Operational Semantics, Wiley.  

Jones, C.B. (1980). Software Development: A Rigorous Approach, Prentice-Hall.  

Moses, P. D. (2006). Formal Semantics of Programming language.Electronic Books in Theoretical 
Computer Science. 148 (2001) 41-73.  

Nielson, H.R. and Nielson F. (1999). Semantics With Applications: A Formal Introduction.  

Nielson, H. R.and Nielson, F. (2007). Semantics with Applications: An Appetizer.   

Plotkin, G.D. (1982). An Operational Semantics for CSP, in: Formal Description of   Programming 
Concepts II, Proceedings of TC-2 Work. Conf. (ed. Bjorner D.), North Holland.  

Sewell, P. (2008). Semantics of Programming Languages.Computer Science Tripos, Part 1B.2008–9, 
Computer Laboratory, University of Cambridge.  

Slonneger, K. and Kurtz, B. L. (1995). Formal Syntax and Semantics of Programming Languages: A 
Laboratory-Based Approach. Addison-Wesley, Reading, Massachusetts.  

https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC


Journal of Advanced Life Sciences and Technology 
Vol. 12 No. 4 | Imp. Factor: 7.061 

                                                                                                                        DOI: https://doi.org/10.5281/zenodo.14604950 
 

Copyright: © 2024 Continental Publication 

 
15 

Springer. ISBN 978-1-84628-692-6. 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84628-692-6

