

Journal of Advanced Life Sciences and Technology
ISSN 3095-1724
Volume 12 Issue 4

October– December 2024
Impact Factor: 7.06

Enquiry: contact@continentalpub.online
Published by Continental Publication | https://continentalpub.online/index.php/life-sciences

Copyright: © 2024 Continental Publication

9

INVESTIGATING OPERATIONAL SEMANTICS: THE
FUNDAMENTALS OF PROGRAMMING

Hiroshi Yamamoto
School of Computing, University of Tokyo, Tokyo, Japan

1.1 Introduction
Programming is a major tool for
computerization and there is need to
understand its basics; the how, the
effects and the assertions. The syntax of
a program deals with the grammatical
structure of the program while the
semantics deals with the meaning of
grammatically correct programs. For
instance, consider the following
statement: c:=a; a:=b; b:=c
Expression(i)
A syntactic analysis of the program
statement given in Expression (i) above
consists of three statements separated
by ‟;‟. Each of these statements has a
variable, followed by an assignment
statement,‟:=‟, and an expression
which is also a variable. Whereas, the
semantics of the statement expresses
that the program is to exchange the
values of variables a and b and setting c
to the final value of b (Nielson and
Nielson, 2007).
A semantics for a programming
language models the computational
meaning of each program (Moses,
2006). It is also concerned with the
rigorous mathematical study of the
meaning of programming languages
and models of computation. Semantics
can be used to understand a particular
language and as a foundation for

 Abstract: Computer programming is a fundamental tool in
the world of computerization, and a solid grasp of its
foundational aspects, including syntax, semantics, and their
implications, is essential. Syntax addresses the grammatical
structure of a program, while semantics delves into the
meaning of programs that adhere to grammatical
correctness. Consider, for instance, the statement: "c: =a;
a:=b; b:=c" (Expression(i)). A syntactic analysis of Expression
(i) reveals three distinct statements, each separated by
semicolons. Each statement consists of a variable, an
assignment operator (":="), and an expression, which is also
a variable. In contrast, the semantics of this statement
dictates the exchange of values between variables a and b,
with c ultimately receiving the value of b (Nielson and
Nielson, 2007). Semantics, in the context of programming
languages, encompasses the computational meaning of each
program. This field is deeply involved in the rigorous
mathematical examination of programming language
meanings and models of computation (Moses, 2006).
Semantics serves multiple purposes, from understanding the
intricacies of specific programming languages to
establishing a foundation for verifying the properties of
particular programs. Additionally, it facilitates the
expression of design choices and provides insights into the
interaction between various language features (Sewell,
2008). This paper explores the vital concepts of syntax and
semantics in computer programming, shedding light on
their significance and practical applications.

Keywords: Computer programming, syntax, semantics,
program analysis, programming language semantics.

mailto:contact@continentalpub.online

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

10

proving properties of particular programs. It can also be used as a tool for expressing design choices,
understanding language features and how they interact (Sewell, 2008).
There are three major levels of semantics namely static semantics which models compile-time checks,
dynamic semantics which models run-time behaviour and semantic equivalences between programs
which may abstract from details of models (Moses, 2006). Dynamic semantics is further subdivided
into operational semantics, denotational semantics and axiomatic semantics (Nielson and Nielson,
2007; Hennessy, 1991). While operational semantics deals with how the effect of a computation is
produced, denotational semantics models the meanings by mathematical objects that represent the
effect of executing the constructs and axiomatic semantics deals with the specific properties of the effect
of executing the constructs. The formal semantics of a language is given by a mathematical model that
describes the possible computations described by the language. It is concerned with rigorously
specifying the meaning, or behaviour, of programs and pieces of hardware among others (Nielson and
Nielson, 2007; Plotkin, 1982).
Formal semantics is capable of revealing ambiguities and also forms the basis for implementation,
analyses and verification of programs.
2.1 Basic Concepts of Operational Semantics (OS)
An operational explanation of the meaning of a construct tells how to execute it (Abramsky and Hankin,
1987; Aho, Sethi and Ullman, 1986; Jones, 1980). To execute a sequence of statements separated by „;‟
as seen in Expression (i), the individual statements are being executed one after the other and from left
to right. To execute a statement consisting of a variable followed by the assignment operator „:=„ and
another variable, the value of the second variable is determined and assigned to the first variable. The
execution of a program in a state where a has the value 3, b the value 5 and c the value 0 is done by
the following derivation sequence:

 (i). c:=a; a:=b; b:=c, [a→3, b→5, c→0] 〉 (ii). a:=b; b:=c, [a→3, b→5,

c→3] 〉 (iii). b:=c, [a→5, b→5, c→3] 〉

 (iv). [a→5, b→3, c→3] 〉
In the first step, the statement c:=a is executed and the value of c is changed to 3 whereas those of a
and b are unchanged. The remaining program is now a:=b; b:=c. After the second step, the value of a
is 5 and we are left with the program b:=c. The third and final step of the computation changes the
value of b to 3. Hence, the initial values of a and b have been exchanged, using c as a temporary variable.
When this kind of operational semantics is formalized, it is often referred to as structural operational
semantics (or small-step semantics). An alternative operational semantics is called natural semantics
(or big-step semantics) and it differs from the structural operational semantics by hiding more
execution details. Figures 1 and 2 show the rules for both structural operational semantics and natural
semantics respectively.
2.2 Structural Operational Semantics (SOS)
Structural operational semantics (SOS) provides a framework to give an operational semantics to
programming and specification languages. SOS generates a labelled transition system, whose states are
the closed terms over an algebraic signature, and whose transitions between states are obtained
inductively from a collection of so-called transition rules of the form: premises conclusion
Structural operational semantics provides transition rules for the evaluation of expressions and
execution of commands as seen in Figure 1. If the number of premises is zero, then, the line is omitted,
and we refer to the rule as an axiom. (Aceto, Fokkinky and Verhoefz, 2001; Slonneger and Kurtz, 1995).

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

11

(1) [ass] 〈x:=a,s〉→ s(x→A[a]s) sos

(2) [skip] 〈skip, s〉 → s
sos

 〈S , s〉 → 〈S' , s'〉
1 1

(3) [comp 1] 〈S ; S , s〉→ 〈S' ; S , s'〉 sos 1 2 1 2

 〈S , s〉→ s'
1

(4) [comp2] 〈S ; S , s〉→ 〈 S , s'〉 sos 1 2 2

tt

(5) [if] 〈if b then S else S ,s〉 → 〈S , s〉= if B[b]s = tt sos 1
 2 1 ff

(6) [if] 〈if b then S else S ,s〉 → 〈S , s〉= if B[b]s = ff sos 1
 2 2

(7) [while] 〈while b do S, s〉→ 〈if b then (S; while b do S) else skip s

〉
sos
Note: sos means Structural Operational Semantics.
Figure 1: Structural Operational Semantics (Source: Nielson and Nielson,
1999).

The role of a statement in „While‟ is to change the state. Given that x is bound to 5 in a state, s, and the
statement x := x + 1 is executed, then, a new state, s0, where x is bound to 6 is produced. So, while the
semantics of arithmetic and boolean expressions only inspect the state in order to determine the value
of the expression, the semantics of statements will modify the state as well. (Nielson and Nielson, 1999;
Despeyroux, 1986).
For the language „While‟, one can easily specify both kinds of operational semantics and they will still
be equivalent. For the two kinds, the meaning of statements is specified by a transition system which
has two types of configurations as shown below:

S, s〉representing that the statement S is to be executed from the state s, and s representing a final
state.
The transition relation will then describe how the execution takes place. The difference between the
two approaches to operational semantics amounts to different ways of specifying the transition
relation. An example of how SOS specifies the translation relation is given below:
Consider the same example earlier given in Expression (i): (c:=a; a:=b); b:=c
Let s0 be the state that maps all variables except a and b to 0
Let s0 a =3 and s0 b =5
Then, the derivation sequence is as follows:

(i) 〈(c:=a; a:=b); b:=c, s0〉

(ii) 〈a:=b; b:=c, s0[c→3]〉

(iii) 〈b:=c, (s0[c→3])[a→5]〉 (iv) 〈((s0[c→3])[a→5])[b→3]〉

Each of the above steps has corresponding trees that explain why they take place. For step (i):

 〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

12

The derivation tree is shown below:

 〈c:=a, s0〉→ s0[c→3]

 〈c:=a; a:=b),s0〉→ 〈a:=b,s0[c→3]〉

 〈(c:=a; a:=b); b:=c, s0〉→ 〈a:=b; b:=c, s0[c→3]〉
The above tree has been constructed from the axiom [ass] and [comp1] (from Figure 1). Hence, it is
seen here that
sos sos details of execution are explained and this is why SOS is called small-step semantics.
2.3 Natural Semantics (NS)
In a natural semantics, the relationship between the initial and the final state of an execution is of
utmost concern. As mentioned earlier, it is defined as a binary relation between configurations as
explained under SOS. Transitions from the initial pair to the terminal state are denoted by:

 〈S, s〉 → s'.
The execution of S from s will terminate and the resulting state will be s'. Natural Semantics is defined
by the set of derivations or rules shown in Figure 2 (Nielson and Nielson, 1999; Bakel, 2002). To show
the translation relation of natural semantics, consider the same example earlier given in Expression (i):
(c:=a; a:=b); b:=c Let s0 be the state that maps all variables except a and b to 0
Let s0 a =3 and s0 b =5
Then, the derivation sequence is as follows:

 〈c:=a, s0〉→ s1 〈a:=b, s1〉→ s2

 〈c:=a; a:=b), s0〉→ s2 〈b:=c, s2〉→ s3

 〈(c:=a; a:=b); b:=c, s0〉→ s3

From the above derivation, the following abbreviations are used: s1 = s0[c→3] s2 = s1[a→5]
 s3 = s2[b→3]

The derivation tree has three leaves denoted as: 〈c:=a, s0〉→ s1, 〈a:=b, s1〉→ s2 and

〈b:=c, s2〉→ s3, corresponding to the tree applications of the axiom [assns].

AYORINDE, Ibiyinka Temilola 21

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

13

(1)
(2)

(3)

(4)

(5)

(6)
(7)

[ass]
ns
[skip]
ns

[comp]
ns

tt
[if]

ns

ff
[if]

ns

tt
[while]
ns ff
[while]
ns
Note: ns
means
Natural
Semantics.

〈x:=a,s〉→ s(x→A[a]s)

〈skip, s〉 → s

〈S , s〉 → s', 〈S , s'〉 → s''
1 2

〈S ; S , s〉→ s'‘
1 2

〈S , s〉 → s‘_______ if B[b]s = tt
1

〈if b then S else S ,s〉 → s‘
1 2

 〈S , s〉 → s‘_______ if B[b]s = ff
2

〈if b then S else S ,s〉 → s‘
1 2

〈S , s〉 → s‘, 〈while b do S, s'〉→ s'‘ if B[b]s = tt
1

 〈while b do S, s〉→ s'‘

〈while b do S, s〉→ s if B[b]s = ff

Figure 2: Natural Semantics (Source: Nielson and Nielson,
1999).

The rule [compns] has been applied twice. One instance is:

 〈c:=a, s0〉→ s1, 〈a:=b, s1〉→ s2

 〈c:=a; a:=b), s0〉→ s2

This instance has been used to combine the leaves 〈c:=a, s0〉→ s1 and 〈a:=b, s1〉→s2 with the

internal node labelled 〈c:=a; a:=b), s0〉→ s2. The other instance is:

 〈c:=a; a:=b), s0〉→ s2, 〈b:=c, s2〉→ s3

 〈(c:=a; a:=b); b:=c, s0〉→ s3

This instance has been used to combine the internal node 〈c:=a; a:=b), s0〉→ s2 and the leaf

〈b:=c, s2〉→ s3 with the root 〈(c:=a; a:=b); b:=c, s0〉→s3.
Hence, this example shows that, unlike SOS, NS actually hides certain details and thus, the name big-
step semantics. The transition between states is of utmost concern here. Despite the difference in the
specification of the transition relation used, both SOS and NS gave equivalent results. Also, the

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

14

examples given also affirms that Formal semantics helps to proof the correctness of programs. (Ganor
and Juhasz , 2007).
3. Conclusion
This paper has been able to show the interest of operational semantics by enumerating how the effect
of a computation is produced. While structural operational semantics has described how the individual
steps of the computations take place, natural semantics has described how the overall results of
execution are obtained. I hereby recommend that “Formal Semantics” should be taken as a course by
computer science students in tertiary institutions so as to enhance a better performance in their
programming work thereby enhancing the production of indigenous software that meets the specific
needs of the people in our community.
References

Abramsky, S. and Hankin, C. (1987).Abstract Interpretation of Declarative Languages, Ellis Horwood.

Aceto, L., Fokkinky, W. and Verhoefz, C. (2001). Structural Operational Semantics

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). Compilers: Principles, Techniques and Tools, Addison-
Westley.

Bakel, S. V. (2002). Operational Semantics.Course Notes. Department of Computing Imperial College
of Science, Technology and Medicine

Despeyroux, J. (1986). Proof of translation in natural semantics, Proceedings ofsymposium on logic in
Computer Science, Cambridge, Massachusetts, USA.

Ganor , R. and Juhasz , U. (2007). Operational Semantics.Class notes for a lecture given by MoolySagiv,
Tel Aviv University, 24/5/2007

Hennessy, M. (1991). The Semantics of Programming Languages: An Elementary Introduction using
Structural Operational Semantics, Wiley.

Jones, C.B. (1980). Software Development: A Rigorous Approach, Prentice-Hall.

Moses, P. D. (2006). Formal Semantics of Programming language.Electronic Books in Theoretical
Computer Science. 148 (2001) 41-73.

Nielson, H.R. and Nielson F. (1999). Semantics With Applications: A Formal Introduction.

Nielson, H. R.and Nielson, F. (2007). Semantics with Applications: An Appetizer.

Plotkin, G.D. (1982). An Operational Semantics for CSP, in: Formal Description of Programming
Concepts II, Proceedings of TC-2 Work. Conf. (ed. Bjorner D.), North Holland.

Sewell, P. (2008). Semantics of Programming Languages.Computer Science Tripos, Part 1B.2008–9,
Computer Laboratory, University of Cambridge.

Slonneger, K. and Kurtz, B. L. (1995). Formal Syntax and Semantics of Programming Languages: A
Laboratory-Based Approach. Addison-Wesley, Reading, Massachusetts.

https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC
https://books.google.com/books?id=oPi0yERDUeYC

Journal of Advanced Life Sciences and Technology
Vol. 12 No. 4 | Imp. Factor: 7.061

 DOI: https://doi.org/10.5281/zenodo.14604950

Copyright: © 2024 Continental Publication

15

Springer. ISBN 978-1-84628-692-6.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84628-692-6

