

Journal of Advanced Life Sciences and Technology ISSN 3095-1724

Volume 11 Issue 4 October – December 2023

Impact Factor: 6.14

Enquiry: contact@continentalpub.online

Published by Continental Publication | https://continentalpub.online/index.php/life-sciences

UNVEILING THE CONSTRAINING ATTRIBUTES OF LOCAL AGGREGATE QUANTILE REGRESSION IN DISSEMINATION MODELS

Chen Mathew

Institute of Computational Science, University of Amsterdam, Netherlands

Abstract: Based on the research and analysis of the development status and characteristics of the Hydrogen fuel cell vehicle industry in Jinhua, combined with the domestic and foreign technology development direction and industry development trend, through extensive demand research and the construction of a standard system, this paper guides the technological innovation and standard creation of Hydrogen fuel cell vehicles, and promotes the sustainable, healthy, scientific and orderly development of the industry. In the process of building the Hydrogen fuel cell vehicle standard system, we should do a good job in top-level design, build a good standard system framework, and promote the better development of the entire standard system. After the introduction of various standards, we should popularize and implement them.

Keywords: Composite quantile regression, parameter estimation, diffusion models, option pricing, interest rate term structure.

1. Introduction

Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression coefficients in classical linear regression models. More recently, Kai el.(2010) considers a non-parametric general regression models using CQR method. However, to our knowledge, little literature has researched parameter estimation by CQR in diffusion models. This consider motivates us to estimating regression coefficients under the framework of diffusion models. In this paper, we consider the diffusion model on a filtered probability space $(\Box, F, (Ft)t\Box o, P)$

(1.1) $dX_t \square \square(t)b(X_t)dt \square \square(X_t)dW_t$, $\square(t) W^t$ is the standard Brownian motion. $b(\square)$ and $\square(\square)$ are known where is a time-dependent drift

function and functions. Model (1.1) includes many famous option pricing models and interest rate term structure models, such as Black and Scholes(1973), Vasicek(1977), Ho and Lee(1986), Black, Derman and Toy (1990) and so on.

 $\Box(t)$

We allow being smooth in time. The techniques that we employ here are based on local linear fitting (see Fan and Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. In Section 2, we propose the local linear composite quantile regression estimation for the drift parameter and study its asymptotic properties. The asymptotic relative efficiency of the local estimation with respect to local least squares estimation is discussed in Section 3. The proof of result is given in Section 4.

2. Local estimation of the time-dependent parameter $\{X^{ti}, i \Box 1, 2, \Box, n \Box 1\}$ $t^1 \Box t^2 \Box \Box \Box t^{n\Box 1}$. Denote

Let the data be equally sampled at discrete time points,

$Yti \square Xti \square 1 \square X ti, \square ti \square Wti \square 1 \square Wti$, and $\square i \square ti \square 1 \square ti$. Due to the independent increment
property of Brownian motion $W^{t,\Box ti}$ are independent and normally distributed with mean zero and variance I^{ti} . Thus, the discretized version of the model (1.1) can be expressed as (2.1) $Y_{ti}\Box\Box(t_i)b(X_{ti})\Box_i\Box\Box(X_{ti})\Box_iZ_{ti}$,
Z^{ti} 1/ \square^i . The first-order discretized where are independent and normally distributed with mean zero and variance approximation error to the continuous-time model is extremely small according to the findings in Stanton (1997) and Fan and Zhang(2003), this simplifies the estimation procedure. Suppose the drift parameter $\square(t)$ to be twice continuously differentiable in t . We can take $\square(t)$ to be
local t^o , we use the approximation linear fitting. That is, for a given time point (2.2) $\Box(t)$ $\Box\Box(t_0)$ $\Box\Box'(t_0)$ (t $\Box t_0$) for t in a small neighborhood of t . Let t denote the size of the neighborhood and t be a nonnegative weighted function. t and t are the bandwidth parameter and kernel function, respectively. Denoting t
$\Box_1 \Box\Box'(to)$, (2.2) can be expressed as (2.3) $\Box(t) \Box\Box_0 \Box\Box_1(t \Box t_0)$.
$\square(t)$ Now we propose the local linear CQR estimation of the drift parameter . Let
k $\exists k = __$ $\exists \exists k = __$ $\exists k \in A$ $\exists k \in $
q n Yti \square_1 (2.4) \square $\{\square_{\square k}\{\ [b(X_{ti})]$ $\square_{\square ok}$ $\square_{\square 1}(t_i\square t_0)\}K_h(t_i\square t_0)\}$ $t_i\square t$ \underline{o} $)$ $K_h(ti\square t_0)=K($ where h and h is a properly selected bandwidth. Denote the minimizer of the locally weighted $(\square^\circ o_1,\square^\circ o_2,\square,\square^\circ o_q,\square^\circ 1)T$ CQR loss (2.4) by . Then, we let
$q \ (2.5) \ \Box\ (t_0) \ \Box \ ^1 \ \Box \ _{0k}$
\overline{q} $k\Box$ 1
We refer to \Box ^(to) as the local linear CQR estimation of \Box (to), for a given time point t o. To obtain the \Box ^(\Box)

In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions. Throughout this paper, M denotes a positive generic constant independent of all other variables.
$b(\Box) \Box(\Box)$ (A1) The functions and in model (1.1) are continuous.
$K(\Box)$ (A2) The kernel function $$ is a symmetric and Lipschitz continuous function with finite support $[\Box M,M]$
$h=h(n) \square 0$ $nh\square 0$. (A3) The bandwidth and
$F(\Box)$ $f(\Box)$ Let and be the cumulative density function and probability density function of the error, $g(\Box)$ $[a,b]$ respectively. denotes the density function of time, usually a uniform distribution on time interval . Define $\Box_j \Box \Box u^j K(u) du$, $\Box_j \Box \Box u^j K^2(u) du$, $\Box_j \Box_j \Box_j U^j U^j U^j U^j U^j U^j U^j U^j U^j U^$
and
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{-}{q k \square 1 k \square} 1 f(c k) f(c k \square)$
$ck \square F^{\square_1}(\square k)$ and $\square kk' = \square k \square \square k' \square \square \square k$ k' . where
\Box ^(t^0) Theorem 2.1 Under assumptions (A1)-(A3), for a given time point t_0 , the local CQR estimation from (2.5) satisfies,
$(2.7) E[\Box^{}(t_0)] \Box\Box(t_0) \Box\frac{1}{2}\Box''(t_0)\Box_2 h^2 \Box o(h^2)$
2 (2.8) $Var[\Box^{}(t_0)] \Box^{1} \underline{\qquad}_{2} \Box\Box^{0}(X^{t}) R(q) \Box o(^{1}) nh g(t_0)b(X_{t0}) nh$
<u> </u>
and, as $n \square \square$,

estimated function , we usually evaluate the estimations at hundreds of grid points.

$(2.9) nh\{\Box^{}(\overleftarrow{t_0})\Box\Box(t_0)\Box^{\frac{1}{2}}\Box''(t_0)\Box h^2\}\Box_L N(0,\underline{\qquad \qquad }_2 \Box\Box^0 \qquad (X^t) R(q))$
$g(t_0)b(X_{t0})$ means convergence in distribution. Where
3. Asymptotic relative efficiency We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect t the local linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-square errors(MSE).From \Box ^(t^0) . That is, theorem 2.1, we obtain the MSE
2 (3.1) $MSE[\Box^{}(t_0)] \Box [\Box^{}(t_0)\Box_2]^2 \Box \Box^{} \Box \Box^{} (X^t) R(q) \Box o(h^4 \Box^{})$
$\frac{-}{2}$ $nh g(t_0)b(X_{t0})$ nh
We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by
$hopt\ (t_0)\]\ \Box\ [\ \Box\Box \underline{0}\ \underline{2}(\ Xt\underline{0}\)R(q)$ $]\ \bar{1}5n\Box 5\ 1$
$g(t_0)b\stackrel{2}{(}X_{t}0)[\square"(t_0)\square_2]$.
$\Box(t^{\rm o})$, denoted by $\Box^{LS}(t^{\rm o})$, is The MSE of the local linear least squares estimation of
2 (3.2) $MSE[\Box^{}_{LS}(t_0)] \Box [\Box^{}_{U}(t_0)\Box_2]^2h^4\Box^{}_{U} \Box^{}_{U} \Box^{$
_
$\overline{2}$ $nh g(t_0)b(X_{to})$ nh
and the optimal bandwidth is
$\Box \Box 2(X)$ 1 1 0 $_{t_0}$ $_{\overline{5}}$ $\Box_{\overline{5}}$ opt hLS (to)] \Box [2 2] n $g(t_0)b$ (X_t 0)[\Box "(t_0) \Box 2]
. By straightforward calculations, we have, as $^{n\Box\Box}$, $MSE[\Box^{}_{LS}(t_0)]\Box[R'(q)]^{\Box^{\frac{4}{5}}}$
$\overline{MSE[\Box(t_0)]}$

Thus, the ARE of the local $\frac{1}{1}$ is $\frac{4}{1}$	linear CQR estimation wit	h respect to the local l	inear least squ	ares estimation
(3.3) $ARE(\Box^{}(t_0),\Box^{}LS(t_0))$	$_{0}))$ \square $[R(q)]$			
(3.3) reveals that the ARE in Kai el.(2010).	depends only on the error	distribution. The AR	E we obtained	l is equal to that
$ARE(\Box^{}(t^{\circ}),\Box^{}LS(t^{\circ}))$ fo el.(2010) can be seen as A Table 3.1: Comparison	RE for more error distribı	itions.		ble 3.1 displays
Error	<i>q</i> □1 <i>q</i> □ 5	<i>q</i> □ 9 <i>q</i> □ 19	<i>q</i> □ 99	
N(0,1)	0.6968 0.9339	0.96590.9858	0.9980	
Laplace	1.7411 1.2199	1.1548 1.0960	1.0296	
0.9N(0,1) $\square 0.1N(0,10^2)$	4.0505 4.9128	4.70693.5444	1.1379	
error distribution is $N(0,1)$ and $q extstyle 1,5,9,19,99$ the local linear CQR estimation performs 4. Proof of result $S11 extstyle S12 extstyle S extstyle G$ In order to prove theorem $C extstyle G extstyle G$ In $C extstyle G$	well when the error conformal a is a $q \Box q$ diagonal matrix a ,	orms to the standard restations and lemmas. Such that the standard restaurance S 12 T and 22 2 $\square k \square$ 1	normal distrib $^{\Box S_{21}}$ ents $f(ck)$, $k \Box$ $^{\Box}$	ution too. $S_{22}\square$, and $\Box_{1,2},\Box_{,q}$, \Box_{q} matrix with
$ \begin{array}{ccc} \square \square & \square(X) \square \square & \sqrt{k} \\ k & ok \\ \text{Furthermore, let} & \square \square \end{array} $		$ \sqrt{1} $ o $ u \sqsubseteq $ $ 0, $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Box(t)\Box$ to \Box
Copyright: © 2023 Continental	Publication			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Define i,k to be ti k i,k $titi$ k . Let n 11 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following term:
$q \square n \square i^*, k \ Kh(ti \square to) \square q \qquad n \square i^*, kKh(ti \square to)(ti \square to) \qquad q$ $L_n(\square) \square \square u_k \square \square \square \square v \square \square \square B_{n,k} (\square)$ $k \square 1 \square i \square 1 \square k \square 1 i \square 1k \square 1$
$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\Box = (u, u, \Box, u, \Box)$ 1 q with respect to , where
$ \Box^{n} b \Box X_{t}i \Box \Box Sn,11 \Box \Box \Box Kh \Box ti \Box to \Box \Box i \Box \Box S11 \text{ with } \Box \Box i \Box 1 nh \Box X t \Box \Box , Sn,21 \Box SnT ,12 , $
$Sn,_{12} \square \square \square \square n \ Kh \ \square ti \ \square to \ \square t\underline{i} \square t\underline{o} \ \underline{b} \square X \ \square ti \ \square i \ \square \square \square \square f \ \square c_1 \ \square, f \square c_2 \ \square, \square, f \square cq \ \square \square T$
$\overline{\Box\Box i\Box 1}$ h $nh\Box X t\Box\Box$,
${}^{1}\mathcal{D}\square X_{t}\square$ Copyright: © 2023 Continental Publication

$Sn,22 \square f$
$ \begin{array}{c cccc} \hline \text{and} & \Box & h & nh \Box Xt \Box \Box. \\ k \Box 1 & i \Box 1 \Box \end{array} $
The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010). Proof of theorem 2.1
Using the results of Parzen(1962), we have
$ \begin{array}{cccc} 1 & n & \Box ti \ \Box to \Box j \\ \Box Kh \ \Box ti \ \Box to \Box & j \ \Box P g \Box to \Box u j nh i \Box 1 & h \\ \underline{} & \underline{} & \underline{} \end{array} $
\square P means convergence in probability. Thus, where
$egin{array}{cccccccccccccccccccccccccccccccccccc$
According to lemma 4.1, we have $L_{\square}\square\square\square^1g\square t^1\square b\square X$ to $\square TS\square\square\square W_n^*\square^T\square\square o_p\square 1\square$ $L^n\square\square\square\square W_n^*\square^T\square$ converges in probability to the convex function S_{\square} S_{\square}
$\overline{2}$ $\overline{\square}\overline{X}_t$ $\overline{\square}$, according to the convexity lemma in Pollard(1991), for any compact set, the quadratic $L^{\square}\overline{\square}\overline{\square}$ $\overline{\square}$ approximation to holds uniformly for . Thus, we have
^ $\Box\Box$ $g\Box$ to \Box $b\Box X$ to \Box $S\Box$ 1 W n* \Box o p \Box 1 \Box \Box n
$ \begin{array}{c c} \hline \square \square X_t & \square \\ \circ & . \end{array} $
Define $\Box i,k \Box I \Box zti \Box ck \Box \Box \Box k$ and $Wn \Box \Box w11,w12,\Box w1q,w1\Box q\Box 1\Box \Box T$
with $w1k \Box T \Box n \Box i,kKh \Box ti \Box to \Box,k \Box 1,2,\Box,q \ w1\Box q \Box 1 \Box q \Box n \Box i,kKh \Box ti \Box to \Box t \underline{i} \Box t \underline{o} $ $nh \ i \Box 1 \ , \ and \ nh \ k \Box 1 \ \bot 1 \ h \ .$
By using the central limit theorem and the Cramer-Wald theorem, we have

$W^n \square E(W^n) N(\Omega, I)$ (4.1) $\square $
$ \begin{array}{ccc} (4.1) & \square & \\ L & (q\square 1)\square(q\square 1) \ Var(W_n) \\ \cdot & \cdot & \cdot \end{array} $
Notice that $Cov(\Box_{i,k}, \Box i,k')$ $\Box\Box kk'$ and $Cov(\Box_{i,k}, \Box j,k')$ \Box o If $i\Box j$. We have
$ \begin{array}{cccc} $
$Var(W) \square g(t) \square$. $W \square N(o,g(t) \square)$ —
Thus, $n \circ .$ Combining the result (4.1), we have $n L \circ .$ Moreover, when $n L \circ .$ Moreover, we have $n L \circ .$ Moreover, when $n L \circ .$ Moreover, we have $n L \circ .$ Moreover, when $n L \circ .$ Moreover, we have $n L \circ .$ Moreov
$ \begin{array}{cccc} 1 & n & 2 & di,k & b(Xti) \\ \square & \square K_h(t_i \square t_0)[F(c_k \square) \square F(c_k)] \square \square_p(1) & nh & i \square 1 \end{array} \qquad \square(Xti) $
And
$ \begin{array}{ccccc} n & q \\ * & 1 & 2 & t\underline{i} \square t $
$\overline{nh} i\Box 1$ h $k\Box 1$
$ \begin{array}{ccc} q_2 & n & {}^2 & t^{\underline{i}} \square t & {}^{\underline{o}} di, k b(Xti) \\ \square & \square K_h(t_i \square t_0) \max_k [F(c_k \square) \square F(c_k)] \square \square_p(1). nh i \square 1h & \square(Xti) \end{array} $
$Var(w^{n^*} \square w^n) \square \square^p$ * Therefore, (1). Using Slutsky's theorem yields $w_n \square_L N(o, g(t_0) \square)$.
Thus, $\Box \Box (Xto) \Box 1 * \Box 2 (Xt) \Box 1 \Box 1$
Copyright: © 2023 Continental Publication

$\square_n \square SE(W_n) \square_L N(0,\underline{\qquad}_2 S \square S) g(t_0)b(X_t) g(t_0)b(X_t)$
o O

So the asymptotic bias of \Box ^(tO) is:
$bias(\Box^{}(tO)) \Box 1 \Box (Xto) - \Box q ck \Box 1 - \Box (Xto) eqT\Box 1(S11)\Box 1E(W1 * n) q b(Xto) k \Box 1 q nh g(t_0)b(X_{to})$
$ \Box 1 \Box (Xto) \Box^q ck \Box 1 \Box (Xto) \Box^n Ki \Box^q 1 \ \Box \Box F(ck \Box di, kb(Xto)) \Box F(ck) \Box \Box, q b(Xto) k \Box 1 q $ $ nh g(to) b(X to) i \Box 1 k \Box 1 f(ck) \Box \Box \Box (X ti) \ \Box \Box $ where $ \Box \Box $
$Ki \square Kh(ti \square to), eq \square 1 \square (1,1,\square, 1)T \text{ and } W1*n \square (w11*,w12*,w1*q)T$.
q c z k , and Note that t^i is symmetric, thus t^{i-1}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
${i}$
Therefore,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$\frac{1}{2}$ $bias(\Box^{}(t_0))\Box\Box^{}(t_0)\Box_2h^2\Box o_P(h^2).$ and
$\Box^2(X)$ $Var[\Box^{}(t0)] \Box$ 1 2 to 12 $eqT\Box$ 1($S\Box$ 1) \Box 1)11 $eq\Box$ 1 \Box 0 $p(1)$ $n\overline{h}$ $g(t_0)$ b (X t 0) q $n\overline{h}$
$\overline{\Box} 1 \underline{\qquad}_{0} \overline{} v_{0} \Box 2 (X t) R(q) \Box o_{p}(1). \qquad nh g(t_{0})b (X t_{0}) nh$
<u> </u>

This completes the proof.

References

- Black, F., Derman, E. and Toy, W.(1990). *A one-factor model of interest rate and its application to treasury bond options*. Finan. Analysts' J., **46:**33-39.
- Black, F. and Scholes, M. (1973). *The pricing of options and corporate liabilities*. J. Polit. Economy, **81:**637-654.
- Fan, J. and Gijbels, I.(1996). Local polynomial modelling and its applications. Chapman and Hall, London.
- Fan, J., Jiang, J., Zhang, C. and Zhou, Z.(2003). *Time-dependent diffusion models for term structure dynamics and the stock price volatility*. Statistica Sinica, **13:**965-992.
- Kai,B.,Li,R. and Zou, H.(2010). *Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression*. J.R. Statist. Soc. B,**72:**49-69.
- Parzen, E.(1962). On estimation of a probability density function and model. Ann. Math. Statist., **33:**1065-1076.
- Pollard, D.(1991). A symptotics for least absolute deviation regression estimations}. Econometr. Theory, 7:186-199.
- Stanton,R.(1997). A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Finance, **52**:19732002.
- Vasicek,O.A.(1977). An equilibrium characterization of the term structure. J. Finan. Econom., 5:177-188.
- Zou,H. and Yuan, M.(2008). Composite quantile regression and the oracle model selection theory. Ann. Statist., **36:**1108-1126. T.A.Louis, Finding observed information using the EMl gorithm, J.Royal Stat. Soc, 1982, B44: 226-233.