OSCILLATION ANALYSIS IN FRACTIONAL VECTOR PDES: A DETAILED QUANTITATIVE AND QUALITATIVE APPROACH
Abstract
<p>Fractional differential equations have gained significant attention for modeling complex processes across various fields such as porous structures, electrical networks, and industrial robotics. They offer a versatile framework for understanding phenomena with self-similar properties, viscoelasticity, and more. This paper delves into the study of oscillatory solutions, a crucial aspect of fractional differential equations, shedding light on their quantitative and qualitative characteristics.<br>While oscillatory behavior in scalar fractional ordinary differential equations has received some attention in previous research, this paper extends the analysis to scalar fractional partial differential equations, a less-explored area. By exploring oscillations in this broader context, we contribute to a deeper understanding of complex processes modeled by fractional differential equations.</p>
Access Full Text
The PDF will open in a new window