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Abstract: Fractional differential equations have
gained significant attention for modeling complex
processes across various fields such as porous
structures, electrical networks, and industrial robotics.
They offer a versatile framework for understanding
phenomena with self-similar properties, viscoelasticity,
and more. This paper delves into the study of oscillatory
solutions, a crucial aspect of fractional differential
equations, shedding light on their quantitative and
qualitative characteristics.

While oscillatory behavior in scalar fractional ordinary
differential equations has received some attention in
previous research, this paper extends the analysis to
scalar fractional partial differential equations, a less-
explored area. By exploring oscillations in this broader
context, we contribute to a deeper understanding of
complex processes modeled by fractional differential
equations.
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1 Introduction

Fractional differential equations are
now recognized as an excellent source
of knowledge in modelling dynamical
processes in self similar and porous

structures, electrical networks,
probability and  statistics, visco
elasticity, electro  chemistry of

corrosion, electro dynamics of complex
medium, polymer rheology, industrial
robotics, economics, biotechnology etc.
See the recent monograph [2, 11-14, 16,
23, 29] for theory and applications of
fractional  differential  equations.
Oscillatory solution plays an important
role in the quantitative and qualitative
theory of fractional differential
equations. There are several papers
dealing with oscillation of scalar
fractional ordinary differential
equations [3-5, 9, 24, 27-28]. However,
only a few results have appeared
regarding the oscillatory behavior of

scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in.

In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of
vector differential equations, where H is a unit vector in R*. We refer the articles [6-7] for vector
ordinary differential equations and [8, 15, 17, 25] for vector partial differential equations. To the present
time, there exists almost no literature on oscillation results for vector fractional ordinary differential
equations and vector fractional partial differential equations, particularly for vector fractional
nonlinear partial differential equations. Motivated by this, we initiate the fractional order vector partial
differential equations for delay equations.

Formulation of the problems: The oscillatory theory of fractional differential equation was

introduced by
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Grace et al [9]
Daax fi(t,x) = v() T fo(t,x) lim JieHax(t) = b,
tOav
where Dq? denotes the Riemann-Liouville differential operator of g , where 0 < g <1.
Chen [4] and Han et al [28] studied the oscillation of the fractional differential equation with Liouville
right sided fractional derivative of order [ of the following form
O OvBofd Og(y fOBob(s OnBly(s)dsdY = o, t > o, Uor(t) DPoy (H)o
O O Ot O
O UOy(P0O0 O p(t) OO0 (s OnEBy(s)dsB = o, t>o. r(Hg(Do
Oc O
Prakash et al. [18] and Sadhasivam and Kavitha [21] investigated the fractional partial differential
equation with Riemann-Liouville left sided definition on the half axis *g of the form
OO d O OO OO Od
r()Do,u(x,t) O qglxt) fO (t Qo) u(x,v)dvdd = a(t)Ou(x,b), (x,t) OO0 Ro = G,

Ot Oo O
with the Neumann boundary condition
Ou(x,t)
=0, (H)UOOO Ro.
UN
O O Om oy oo o
0 m

p(Og(Do,ul,t) U qjCot) f;0 (¢Us) u(x,s)dsd = a(t)Ou(x,t) O F(x,b),
(x,HOO00RDo = G,

Ot j=1 Oec O
subject to the boundary condition
Ou(x,t)
OO, Hulx,t) =0, ()OO0 Ro.

OO

To the best of our knowledge, nothing is known regarding the H-oscillatory behavior for the following
class of vector fractional partial differential equations with forced term of the form

m

DBo: Or(t)DEo,U(x,t) U= a(t) D UCx,t) O Oa: ()T UG, Ui (1)

1=1
k td
et |
O Op Gt 500 (@ O s)Ulx, O; (s)) dsO UG, O; (1)
o]
J=1

LF(x,t), (e, H)OG = OORO,

Ro = (o,]) , where [ is a bounded domain in R" with a piecewise smooth boundary [1L1,[1[](0,1) is
a

constant, Dot is the Riemann-Liouville fractional derivative of order [ of u with respect to t, [ is
the Laplacian

2

n n O u(x,t) "
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operator in the Euclidean n - space R (ie) Uu(x,t) = U 2 and U(x,L]; || (s)) is the usual Euclidean
norm in
r=1 O«
Rn |

Equation (1.1) is supplemented with the following boundary conditions
OU(x,t)
OO@,0Ux,t) =0, (,pOO00ORO, (1.2)

OO
where [ is the unit exterior normal vector to [1[1] and [1(x,t) is positive continuous function on 111
Roand
Ulx,t) =0, (O000Ro. (1.3)
In what follows, we always assume without mentioning that
A) r(OCE(Ro;RO),a(t),a: ()OC(RO;RO),l =1,2,...m ;
(A2) 0O;,0:0C(Ro;R), lim; (t) = lim: (1) = O,i =1,2,...m, j =1,2,....k ;
tO0 o0 _
(A3) p;jUC(G;R) and pj(t) = minxao p j(x,b), jJU Ik = U1,2,...,kL];
(A4) FOC(G;R™, fu(x,t)IC(G;R) and U fu (x,t)dx U 0;
O
(A5) fiUC(Ro;R) are convex and non decreasing in R with ufj(u) > o for u [J 0 and there exist positive

fi@)

constants Y such that U0jforallu U o,j k. u

The study of H-oscillatory behavior of fractional partial differential equation is initiated in this paper.
Our approach is to reduce multi-dimensional problems for (1.1) to one dimensional oscillation
problems for scalar functional fractional differential inequalities. The purpose of this paper is to
establish some new H-oscillation criteria for equation (1.1) with (1.2) and equation (1.1) with (1.3) by
using a generalized Riccati technique and integral averaging method. Our results are essentially new.
2 Preliminaries

In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some
notations which are useful throughout this paper. There are serveral kinds of definitions of fractional
derivatives and integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-
axis Ro. The following notations will be gsed for the convenience.

un (x,t) =\UCe,0),H , fir (0h1) =(F(x,0,H

1 QRS
Vu(t) = O|us (x,t)dx, wheré ﬁ =0Odx. (2.1
o0 d
Definition: 2.1 By a-solution of (1.1};(1.2) and (1.3) we mean a non trivial function _

UGe,HOC2E(G;RHOC(G Ot " o.,0);RHOC(G O[~ to,[);R") and satisfies (1.1) on G and the
boundary conditions

(1.2) and (1.3), where t"o:= min®P o, min B Oinf CI; () PP O | ~to = min® Oo, min B Oinf O (B 0O
O

O 10:i0m OtOo Od 0O 10 70m OtOo OO

Definition: 2.2 Let H be a fixed unit vector in R". A solution U(x,t) of (1.1) is said to be H-oscillatory
in

G if the inner product (U (x,t),H> has a zero in LI1[1(t,[]) for any t > 0 . Otherwise it is H-nonoscillatory.
Definition: 2.3 The Riemann-Liouville fractional partial derivative of order o <[1<1 with respect to t
of a

function u(x,t) is given by
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DBou(x,t) :=0 1 ot (t Ov)PHu(x,v)dv, (2.2)

OtOaO0) o

provided the right hand side is pointwise defined on Rowhere [ is the gamma function.

Definition: 2.4 The Riemann-Liouville fractional integral of order [1 > 0 of a function y : Ro [1 R on
the half-axis R is given by

1 t 001

O

Ioy(t) := O (¢t Ov) y(v)dvfor t>o0, (2.3)

O o

provided the right hand side is pointwise defined on k.

Definition: 2.5 The Riemann-Liouville fractional derivative of order [1 > 0 of a function y : Ru 1 R
on the half-axis R0 is given by

DBoy(t) := ooo OBB0O00y@)  for t>o, (2.4) dbbt
dt — .
provided the right hand side is pointwise defined on o where [1[J[] is the ceiling where T 15
function of [ . ?ntelg(e)sl ve

Lemma: 2.1 [11] Let y be solution of (1.1) and

t (2.5) 3 H-
K(t):= 0 (t J s)EH y(s)ds for LJL1(0,1) and t> o.

0

Then

KO = 0aUO) Do y(t)for LOL(0,1) and  t > o. (2.6)

Lemma: 2.2 [10] If X and Y are nonnegative, then
mXY i [ Xm0 (mO1)Ym, (2.7)
Oscillation of the problem (1.1),(1.2)

We begin with the following Lemma.
Lemma: 3.1 Assume that (4:) [1(A5) hold. Let H be a fixed unit vector in R" and U(x,t) be a solution
of (1.1) . (DIf uu (x,t) is eventually positive, then g (x,t) satisfies the scalar fractional partial inequality
m
DB, Or(t)DPo,aun (x,t) OO a(t) Oua (x,t) © Oai (1) Oua (x,2i (1))
1=1
k O+« 8o 0O
O0p; 00 @ ds)  un(x,Uj(s)dsOun (6,05 (0) O fu (x,0). (3.1)
Jj=1 Oe O
(i)If ug (x,t) is eventually negative, then g (x,t) satisfies the scalar fractional partial inequality

DBn: Or(t)DPo,as (x,t) OO a(t) Ouw () E Oai (H) Oua (x,Fi (1)

1=1
kot O
O 0o
OOp;Of00¢0s)  wr(x,0j(s)dsOur (e, 0;(0)) O fu (o). (3.2)
j=1  Oo O

Proof. Let un (x,t) be eventually positive. Taking the inner product of (1.1) and H, we get
m
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DOo Or()DoC AUG,D,H O= a(®)UGH,H 00w (00 ) Uk, 0:(0),H

1=1
e | | < ) )
O0Op () ;00 (e Os) Ulx,0;(s)) dsd Ux, 0 (8),H U F(x,t),H,
j=1 e 0O
that is,
m
DB Or(t)DPo,aua (x,t) = a(t) Jua (x,t) © Oai () Oua (x,5i (1))
1=1
k
O
OOp j (x0) f; OO0t O | | 900UR,O; () dsO Ouw G, 0; ()0 fiu (o). (3.3)
j=1 o1
By (A3), we have
Ot [O0Od piGet) fi || OO (t":l S)U(x,;(s)) dsOum(x,; (1)
O ed
O¢ OO0 ” %
Op,;@f;00¢0 " s)U0;(s)) dsUun (x,0; (1),
o[

since fj LIC(RO,R), j =1,2...k, we have un (x,[1; (s)) I U(x,L; (s))l, therefore
O:  OoOO pi®fi | OO A $)UCOi(s) dsOum (05 (1)
e[
Ot 0O0O O

Up;@f;00@0s)  unlx,Uj(s))dsUun (x,0; (1), j =1,2,....k. (3.4)
Oeo O
Using (3.4) in (3.3), we get

m
DBo: Or(t)DPo,aum (x,t) OO a(t) Cuw () E Oai (1) Ouw (x,Fi (1)
1=1
k t O
O OO
OOp;0 00 ds)  um(e,Oj(s))dsOun (x,0; (1) O fa (x,1).
Oo Oj=

Similarly, let “g (x,t) be eventually negative, we easily obtain (3.2). The proof is complete.
The inner products of (1.2),(1.3) with H yield the following boundary conditions.
Ou GO OO, Dun () =0, (,pOOOORD, (1.2)O

OO
ua(x,t) =0, (,H)OOOORD. (1.3)

Lemma: 3.2 Assume that (A:) [1(A5) hold. Let H be a fixed unit vector in R”. If the scalar fractional
partial inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality
(3.2) has no eventually negative solutions satisfying the boundary conditions (1.2)[J or (1.3)[1, then
every solution U(x,t) of the problem (1.1),(1.2) or (1.1),(1.3) is H-oscillatory in G. Proof. Suppose to the
contrary that there is a H-nonoscillatory solution U(x,t) of (1.1),(1.2) or (1.1),(1.3) in G, then un (x,t) is
eventually positive or un (x,t) is eventually negative. If un (x,t) is eventually positive, then by Lemma 3.1
ug (x,t) satisfies the boundry condition (1.2)[] or (1.3) ] . This contradicts the hypothesis. The similar
proof follows when g (x,t)is eventually negative. Theorem: 3.1 Assume that (A4:) [1(As) and (A¢)

min;or O (0)0O=0) O t.
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K
(A7) un (x,t) O L hold . If the fractional differential inequality
DUBp Or()DBPoVy (HOO LOp (1) £ (Ku (1) O o, (3.5) k .
j: 1 .]=
has no eventually positive solutions and the fractional differential inequality has Ho
eventually
k negative
DoBUrDoR Ve ()UO LOp (@) f (K= (1) O o, (3.6) solutions,
then every

solution U(x,t) of (1.1) and (1.2) is H-oscillatory in G .

Proof. Suppose to the contrary that there exists a solution U(x,t) of (1.1) , (1.2) which is not a H-
oscillatory in G . Without loss of genearality, we may assume that 4z (x,t) > 0 in [1[[%,[1) for some %
> 0. Integrating (3.1) with respect to x over [1 , we obtain

m
O DEo Or()DPous (H)Odx O a(®) O Ouw (x,t)dx O Oai ()0 Oua (e, O: (1)dx
O O O
=1
O
k t oo O
OOp;0O 00 (¢ O s) ua (x,0; (s))dsOun (x,d; (H)dx O O fa (x,t)dx, t O to. (3.7)

Jj=1 O0Oo L L
Using Green’s formula and boundary condition (1.2)[] yield that
Ou (x,t)
O Oua (x,t)dx=0 H dS =00 OCe,Huu(x,t)dS o, tto (3.8)
O oo OO0 od

and
O Oua (x,di()dx = 0O Ou H&Di@) dS =00 OCe,Hua (x,di (8))dS O o,

O o0 OO 00
1=1,2,.m,tdt. (3.9)
By using Jensen’s inequality (46 ),(4,) and (2.1) , we get
0y OO O
Of600¢0s)  um(eUi(s))dsOun (x, 05 (8)dx
OOo O
O Lf Oo0O0 OoOocOOoet (t O s)PBuy (x,0; (s))dsE Oodxoo LU
O LA 000t O s) OOO00 O uH (x,0j (s))dxO0Odsd O
Oo OO © O
O LOdxf; OO0t O s) OO0 OO uH (x,0j (s))dx(O dx) 01 OOdsO O
O Oo OO O O O

O¢ OO O
OLOdxf; 00 @ Os)  Ve(Oj(s))dsU
O Oo O
O LOdxfj(Ku () tO to. (3.10)
O
Also by (A4) ,
Ufa(x,t)dxo. (3.11)
O
In view of (2.1), (3.8)-(3.11), (3.7) yield
k
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DBp Or()DEoVe (OO LOp () fi(Ke(®) Oo.  (3.12)
J=1
Therefore, Vu (t) is an eventually positive solution of (3.5). This contradicts the hypothesis. The case
where un (x,t) < 0 in [10[%,[]) can be treated similarly and we are also getting a contradiction. The
proof is now complete. Theorem: 3.2 Suppose that the conditions (4:) [1(4;)and
O 1 O
Oto OF0O weOBods =0 (3.13)

‘hold
Futhermore, assume that there exists a positive function [1CICH((0,[]);Ro) such that
UOd ~ Ok ~pji(s)E ~r (s) O~ O(s~)02 0O Ods = O, (3.14) limsup LLOI(s) O

oo O, 80 =1 4000O00)0Os) o

where [lj are defined as in (A5 ) . Then every solution of U(x,t) of the problem (1.1),(1.2) is H-oscillatory
inG.

Proof. Suppose to the contrary that there exists a solution U(x,t) of the problem (1.1),(1.2) which is not
Hoscillatory in G . Without loss of generality we may assume that g (x,t) > 0 in [1U[%,[J) for some %
>0.

That is, Vu (1) is an eventually positive solution of (3.5). Then there exists t: [ to such that Vu (t) > o
and Ku (t) > o for t [ t.. Therefore, it follows from (3.5) that

DBo Or()DEoVe (OO OLOp (D) fi(Ka(t) <o for tUO[t,0). (3.15)

) Suppose
J=1 ) not, then
Thus DEoVH(t) [ 0 or DEoVH (1) < 0,t [ t: for some 4 [ t,. We now claim that DOoVa (f)

< o0 and

bOpVvy(t) O o, SJor tOt. (316)  {here exists

t> L[t1,[0) such that DHoVH (t2) < 0. Since r(t)DEoVu (t) is strictly decreasing on [t,[]). It is clear that
r(t)PSoVH (1) < r(t)PPoV(t:) := Le,

where ¢ > 0 is a constant for t ([t»,[1). Therefore from (2.6), we have

KaO (t) O O Oc O
=Dove(®)<O0Or@O00  for t0O[t,0).

oaUoo) 0O
Then, we get
O10OKxO (D)
OO0 o OO0 0O0deOadn) Sor tUO[t,0).

‘Integrating the above inequality from t. to t , we have
t010 K@®UK (t)
O

L2 OO r(s) OOds O O HeO(OOH) =
<KH((t2) for tU[t2,0]).

cO(00) Letting t U101 , we get
ds 0 OO2 OOEr(1s) BEEEgeKO0H (Ot2d)) < O. o
This contradicts (3.13). Hence DUoVy (t) U o for t [[t1,[]) holds. Define the function W(t) by the
generalized Riccati substitution
r(t)DELVH (t) for t0[t,0). (3.17)
W(t) =L1(t)
Copyright: © 2023 Continental Publication
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Ku(t)
Then we have W(t) > o for t L[t:,[). From (2.6),(2.7), (3.5)and (A5 ) it follows that
pDOOW() = O@ pOO0Or()DOOVH (OO DOO OO O() OOr(o)DOOVH (t)

Ku(t) OKue(HO
O OO@LOkp(0) fj(KH (1) O OKH @ODUOOO@) UU@DbUO KH (¢) Ur(H)DUOVH (t)

KH (t) ooo KH2 (1) Ooo
J=1
k O O

O OLO@O0,p;j(t) O DBBOW() O PUKEO W(t). (3.18)

j=1 () KH (1)

Let W(t) = W~(U),U(0) =U~ (1), pj(t) = ~p;i(L1),Ku (t) = K~ (L) .

Then DBoW(t) WND(EI) DBp(t) =00~ 0U(0) . Then the above inequality becomes k ~ ~
~ O ~pj (OO O~O(HW~(O)O K~HO (Hw~ (O)
wi(O) O Orocd) Oy

O K (D)

JI=:|1 DLE~(D)Djk=1D ~p;(O)EEE~-~OEHW~EHU OO ~O0)~rw~(O2) (O) . (3.19);
((H) ()

Us1ng Lemma 2.2 and (3.20) in :{ 3.19);wehave — |— D(l? 0l) ~

~r(D)DD m[(m)]=k ~r(0)
WD(D) O ooty ~pid)ydr - . (3.21) ’;aking
m =2,

X= ~[O)~r(OWw),Y=2 0O@OOHO~C) OOE). (3.20) O

j=1 4 00O0O)OE)
Integrating both sides of the above inequality from [, to [, we obtain OO OLO~(s)k O ~pj
(s)d1~r(s)O0O~ O(~s)O2 O0Ods OW~(O)Ow~(0O) < W~ (O1).
J
10 j=1 4 000OODHOEO O
oo
Taking the limit supremum of both sides of the above inequality as [1[1[1, we get
limsup O OOLO~(s) Ok O ~pj (s)d 1 ~r(s)d0O~ O(~s)02 O0Ods < W~ (1) < O,

J

OO0 Oo.ead =1 4 00@O00)O(s) o

which contradicts (3.14) and completes the proof.

Theorem: 3.3 Suppose that the conditions (4:) [1(4;) and (3.13) hold. Futhermore, suppose that there
exists a positive function [LI1L1C2((0,]);R0) and a function PL1C(D,R) where D := [(t,s):t U s [ tolJ
such that

1. P(t,t) = o for t [ to,
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2. P(t,s) > o for (t,s)[1Do, where Do := LI(t,s):t > s L to[] and P has a continuous and non-positive
L1P(t,s)
partial derivative Ps[1(t,s) = on Py with respect to the second variable and satisfies [ls
limsup 1 LOpr(d,s)OLO~(s) Ok O ~pi(s)d1r~(s)Ud0~ O(~s)2 O0ds =
O, (3.22)

J

Oodpe(O,E)o Bo ja 4 OGOOHO(s)Po

1

where []; are defined as in Theorem 3.2. Then all the solutions of U(x,t) of the problem (1.1),(1.2) is H-
oscillatory in G . Proof. Suppose that U(x,t) is H-nonoscillatory solution of (1.1),(1.2) . Without loss of
generality we may assume that g (x,t) is an eventually positive solution . Then Vg (t) is an eventually

positive solution of (3.5). Then proceeding as in the proof of Theorem 3.2, to get (3.21)
w~0O(O0) O OLO~(HOk O; ~pj(O) O 1 r~(OHOO~ O@O~)2

Jj=1 4 000O0O)OO)
multiplying the previous inequality by P([],s) and integrating from [, to [ for L1I[[11,[]) , we obtain
OOp(O,s)00LO0~(s) Ok O ~pj ()0 1r~ ()OO~ (~s)H2 OOds O OOP(O,s)W~(s) OO0 O
UOpPsLI(O,s)W~ (s)ds j

O O j=1 40000000 101

1 ]
~ O ~ ~
O p(O,00w (OB O PsLI(O,s) W(s)ds < P(L1, L) W(LL).
O
1
[ Therefore 1 Ur(U,s)0OLO~(s)Uk Ui ~pj () 1 ~r (s)I0~ O(~s)U2 L0ds < W~
(O1) < O,

P(O,00c0 OO ju 4 O0OOHOs)OO

1

which is a contradiction to (3.22).The proof is complete.

Corollary 3.1 Assume that the conditions of Theorem 3.3 hold with (3.22) replaced by
O k

1 ] ~ U~pjls)ds=01, limsup P(O,s)LO(s) Oy

oo pO,000 j=1

Oam=

1 ~r(s) 000~ O(s)z
limsup Op(d,s) ~ ds < [,

OpooP(O,0)0 OOmO(s)

1

then every solution Ul(x,t) of (1.1),(1.2) is H-oscillatory in G. Next, we consider the case
L1
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O ds < [, (3.23)

to r(s)
which yields that (3.13) does not hold. In this case, we have the following result.
Theorem: 3.4 Suppose that the conditions (4:) [1(4;) and (3.23) hold and that there exists a positive

function LICICH((0,0);Ro) such that (3.14) holds. Futhermore, assume that for every constant [z
o, where

Lr= max|:||:|3,|:|4|:|
O « ] ]

OO0 ~r(uw) OO0 ~pj(s)dsOUdu = O. (3.24)
Or o0 j=10Or i
]
~ oo ~
Then every solution of Vi ([J) of (3.5) is H-oscillatory or satisfies lim L1 s Va (s)ds = 0. Proof.
Suppose
o

o that U(x,t) is H-nonoscillatory solution of (1.1),(1.2) . Without loss of generality we may assume that
un (x,t) is an eventually positive solution . Then Vg (t) is an eventually positive solution of (3.5). Then
proceeding as in the proof Theorem 3.2, there are two cases for the sign of DEoVg (1) . The proof when
DBoVh (1) is eventually positive is similar to that of Theorem 3.2 and hence is omitted. Next, assume
that DYooV (t) is eventually negative. Then there exists

t3 1 t > such that DEPoVu(t) < o for t [ t3.From (2.6), we get
KOu () = O@O0O)DEaVaE(D) < o, for tOts.

Then Ky ([0) = OO VeO (O) < o for L Us. Thus we get lim Ku (L1):= M. [ 0 and K (1) [
M. We claim that

oonOo

M, = 0. Assume not, that is, M1 > o then from (45 ) , we get

k

DBp Or(t)DPo Ve ()OO OLOp (1) f UKy (1)

J=1

k

O dLM:O0ipj(v), for  t O[ts,0).

J=1

Let r(t) = -r (1),Va(®) = V-u (1), p,;(®) = ~p,(LJ).

Then DEoVy (1) = V-x (O),Do Or(t)DPo Ve ()= O~r(C)V-xO (CHOE .

Using these values, the above inequality becomes

U~r(HV-xgO (DHOE O OLM.ok O; ~p j (O), for OO[O3,00). Integrating both sides of the last
inequality from 15 to [, we have

j=1

ood ~ OO0 10k OO~pj(s)ds
~r (s)VHO (s) ds O OLM Oj

U3 j=103

k 0k O

- (D)V-0 (O) O r(d3)V-s0 (03) O LM:O0; 0 -pj (s)ds O Ok O LM:O 0,0 -p j (s)ds
j=tt3  j=193

kK O
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k O K~O OLMiOOj0O~pj(s)ds
~p (s)ds.
Odrvmdoyjg g Hence from (2.6), we get H (1) =V~HU () O j=1~r(CH) O .

j=1 O3 OaOm)

k O
O0Ojo-~pj(s)ds
~ Lj=103

Integrating the last inequality from Y4 to [, we get Ku ([J) [ Ku (L) OGO O)LM: O 4 ~r (1)
du.

a

~

Letting L1101, from (3.24), we get lim Ky ([1) = C10J. This contradicts Kz ([1) > 0. Therefore we have
M, = 0, that

oonOo

~ O OO ~is, lim Ky () = 0. That is, lim [ (CJOs) Vi (s)ds = 0 . Hence the proof.

oonOo O0OOo

4 H-Oscillation of the problem (1.1),(1.3)

In this section we establish sufficient conditions for the oscillation of all solutions of (1.1),(1.3). For this
we need the following:The smallest eigen value [lo of the Dirichlet problem. OO (x) = o
in O, Ox) =0 on (10, is positive and the corresponding eigen function [l(x) is
positive in [1.
Theorem: 4.1 Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of U(x,t) of
(1.1) and (1.3) H-oscillates in G . Proof. Suppose that U(x,t) is a H-nonoscillatory solution of (1.1) and
(1.3) . Without loss of generality we may assume that uxn (x,t) > 0, in OO[%,[]) for some % > o.
Multiplying both sides of the Equation (3.1) by [1(x) > 0 and then integrating with respect to x over[l.,

m
we obtain for ¢t [ &, [ DYo Or(t)DEPova (0 L (0)dx O a(®PO Oua (,t) (x)dx E Oe (00 Cug (x5

M) Oodx

O O O
1=1

O

k t Od Od
O0Op;00O f;00 (O s) un (x,0j(s))dsHun (x, (T (x)dx O O fu (x,t) (x)dx. (4.1)
O0Oo O O
Jj=1
Using Green’s formula and boundary condition (1.3)[1 it follows that
O Cum (e,t) dOo)dx = O un (x,t) O (x)dx = O 0o O un (x,)d(x)dx L o, t Ot (4.2)
O O O
and
O Oun (e, i () O 0)dx = O um (e, () OO G)dx = O 0o O um (x, i (1) (x)dx O o,
O O O
tOt,1=12,..m. (4.3)
By using and Jensen’s inequality, (46 ) and (4,) we get U1/ OO0 (¢ O s)BBuy (x,H (s))ds O

ug (2,55 (D)) D (x)dx
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O0Oo ]

(tOs) O O Lfj OOO0OO000O0Oot(t O s)O0OuH (x,0j (s))O()dsOO00dxO OO0
OLfj 00000t OOOOOOuH (x,05 (s)OG)dxOO0dsO OO

O

O OO0t PB00O ug (x,0; () O ) dx(O () dx)P1 BOdsE . Set
OLOMdxf;0 (tOs) ]

O Oo OO O O O

1

Vi (t) = O un ,)O0)dxBO00M)dxE0,  t 0O t. (4.4)
(] oooo:s 0o o

Therefore, L1 f; 101 (¢t O s) ug (x,05 (s))dsOun (o, () O (x)dx O LOO ) dxf i (Ku () , t O 4,

J Ulm. (4.5)
OOo O O
By (45) , O/u (x,) 0 (x)dx O o. (4.6)
O
k

In view of (4.4), (4.2)-(4.6), (4.1) yields D2o Or(t)DEoVe ()OO LOp ;i (t) f(Ka (1)) O o, (4.7)
j=1 for t O t.. Rest of the proof is similar to that of Theorems 3.2 and 3.3, and hence the details are
omitted.

Corollary 4.1 If the inequality (4.7) has no eventually positive solutions, then every solution U(x,t) of
(1.1) and (1.3) is H-oscillatory in G .

Corollary 4.2 Let the conditions of Corollary 3.1 hold; then every solution U(x,t) of (1.1) and (1.3) is
Hoscillatory in G .

Theorem: 4.2 Let the conditions of Theorem 3.4 hold; Then every solution Vu ([1) of (4.7) is H-
oscillatory

O

U0 ~ or satisfies lim L1010 sC VE(s)ds = 0. The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2
are similar to that of in

oonOo

0

Section 3 and hence the details are omitted.

5 Examples

In this section we give an example to illustrate the results established in Sections 3. Example 1.

Consider the vector fractional partial differential equation
O O

DUt U0t 23 BU13,tU(x, ] =1+ 231U, t) o IO 2043103 (32 [ O U(x,t L10)
OO OO0 g4 OO0 O@)= 4 OO

o 3
O« Od

ot

(]
L Dm‘f[”]t 0 sO 3 UH0x,s O 500 dsO0O0 UnOBx,t O B2 gl O F(x,t), (5.1)

V3 o0 20 O

(x,pdG , where G = (0,[1)(o,1)d(0,[1) , with the boundary condition

000 w(o,r) OO O = (O, = OO Ouwu=((OO,,:) 0000 = 000000 O OO, t O o.
(5.2)

U(o,t) =

Ous, (o,n)0 O
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eld=1,m=rk=1n=2,r(t) =t,pi(x,;t) =1,a(t) =t,a{t)= o0 2t3 [ 34t 3 ,01(0) =0,01(0)
2

3 V3, 0o 00 O

O30
Y, 3 1 O sinxcost U
CVa@dy? =
Fxt)=f 3 O
1.2 O
C@C)” /3 2
E_3_ 2Y9 3 [
O t OO
O 20 2 O 1 1
and fi(u) = u . It is easy to see that p:(t) = oo 3 07 minxoo pa(x,t) = min
[mfim 27
t®sinxcost and
DLetH = e; = LooJoo, we observe that fe: \/g(u(i))z (,t) =
(x tydx = ——— 4005
\/E(D(l))2 L] fetcost
3 1
o 3o 0o, OtO.
2 2

Take [1:=1,[1,=1,1J(s) = s. It is clear that conditions (4:) [J(4,) and (3.13) hold. Therefore,
O O

OOO0L ~( ~p1()0 ~r —g
as 000, O )01 3o

(s)d0O~0O(s~)02 O0ds =0000Ls 1 0 Ods 00

w [

O 400O0)O(s)d OO

OO0 d 10 40(0)s O

1

] 3 ]

Thus all the conditions of Theorem 3.2 are satisfied. Hence, it follows that every solution U(x,t) of
(5.1),(5.2) is e:1-

[sin xsin t[]

oscillatory in G. Infact U(x,t) = ﬂm [0 30oo, is one such solution of the problem (5.1) and (5.2). We
note that the

Lol above solution U(x,t) is not e= [ oscillatory in G, where e-= Lol :[oo.
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