

Journal of Statistical and Mathematical Sciences ISSN 3065-100X

Volume 11 Issue 2 April-June 2023 Impact Factor: 6.80

Enquiry: contact@continentalpub.online

Published by Continental Publication http://continentalpub.online/index.php/jsms

AN IN-DEPTH ANALYSIS OF OSCILLATIONS IN FRACTIONAL **VECTOR PDES: QUANTITATIVE AND QUALITATIVE PERSPECTIVES**

Dr. Arun Kumar Subramaniam and Dr. Kavitha Akshita Devi

Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College Periyar University, Tamil Nadu, India.

Abstract: Fractional differential equations have gained significant attention for modeling complex processes across various fields such as porous structures, electrical networks, and industrial robotics. They offer a versatile framework for understanding phenomena with self-similar properties, viscoelasticity, and more. This paper delves into the study of oscillatory solutions, a crucial aspect of fractional differential equations, shedding light on their quantitative and qualitative characteristics.

While oscillatory behavior in scalar fractional ordinary differential equations has received some attention in previous research, this paper extends the analysis to scalar fractional partial differential equations, a lessexplored area. By exploring oscillations in this broader context, we contribute to a deeper understanding of complex processes modeled by fractional differential equations.

Keywords: Fractional differential equations, oscillatory behavior, partial differential equations, qualitative analysis, quantitative analysis.

Introduction

Fractional differential equations are now recognized as an excellent source of knowledge in modelling dynamical processes in self similar and porous electrical structures. networks. probability and statistics. visco elasticity, chemistry electro corrosion, electro dynamics of complex medium, polymer rheology, industrial robotics, economics, biotechnology etc. See the recent monograph [2, 11-14, 16, 23, 29] for theory and applications of fractional differential equations. Oscillatory solution plays an important role in the quantitative and qualitative of fractional differential equations. There are several papers dealing with oscillation of scalar fractional ordinary differential equations [3-5, 9, 24, 27-28]. However, only a few results have appeared regarding the oscillatory behavior of

scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in. In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of vector differential equations, where H is a unit vector in \mathbb{R}^n . We refer the articles [6-7] for vector ordinary differential equations and [8, 15, 17, 25] for vector partial differential equations. To the present time, there exists almost no literature on oscillation results for vector fractional ordinary differential equations and vector fractional partial differential equations, particularly for vector fractional nonlinear partial differential equations. Motivated by this, we initiate the fractional order vector partial differential equations for delay equations.

Formulation of the problems: The oscillatory theory of fractional differential equation was introduced by

Copyright: © 2023 Continental Publication

Grace et al [9]	Vol. 11 No. 2 Imp. 1 actor. 0.000
$D_a{}^q x \square f_1(t,x) = v(t) \square f_2(t,x) \lim_{t \to \infty} J^1{}_a \square^q x(t) = b,$	
$t\Box a\Box$	
where D_{a^q} denotes the Riemann-Liouville differential operator of q , whe Chen [4] and Han et al [28] studied the oscillation of the fractional differ	
right sided fractional derivative of order □ of the following form	_
	(t)
	$r(t)g(D\Box$
Prakash et al. [18] and Sadhasivam and Kavitha [21] investigated the	fractional partial differential
equation with Riemann-Liouville left sided definition on the half axis R_{\square}	of the form
$r(t)D_{\square,t}u(x,t) \square q(x,t) f \square (t \square v) \qquad u(x,v)dv\square = a(t)\square u(x,t)$	$(x,t) \square \square \square R = G$
_	_ ,
t 0 0	
with the Neumann boundary condition $\Box u(x,t)$	
$= 0, (x,t) \square \square \square \square R_{\square}.$	
$\square N$	
1	$a(t)\Box u(x,t)$ \Box $F(x,t)$,
$(x,t)\Box\Box\Box R_{\Box}=G,$	
$\Box t$ $j=1$ $\Box \circ \Box$	
subject to the boundary condition	
$\Box u(x,t)$ $\Box \Box (x,t)u(x,t) = 0, (x,t)\Box \Box \Box \Box R_{\Box}.$	
$\Box\Box(x,t)u(x,t)=0, (x,t)\Box\Box\Box\Box L \mathbf{K}\Box.$	
To the best of our knowledge, nothing is known regarding the H-oscillate class of vector fractional partial differential equations with forced term of	ory behavior for the following f the form
m $D^{\square}_{\square,t} \square r(t) D^{\square}_{\square,t} U(x,t) \square = a(t) \square U(x,t) \square \square a_i(t) \square U(x,\square_i(t))$	
i=1	
k $t \square$ \parallel \parallel	
$\square \square $	
$j_{=1}$	
$\Box F(x,t), \qquad (x,t)\Box G = \Box \Box R_{\Box},$	
$R\square=(0,\square)$, where \square is a bounded domain in \mathbb{R}^n with a piecewise smooth	th boundary $\Box\Box,\Box\Box(0,1)$ is
a constant, $D_{\square}^{\square}_{,t}$ is the Riemann-Liouville fractional derivative of order \square	\exists of u with respect to $t \square$ is
the Laplacian	_ 01 atill 100p00t to t , 🗀 10
2	
n n \square $u(x,t)$ Copyright: © 2023 Continental Publication	
, ,	

operator in the Euclidean n - space R (ie) $\square u(x,t) = \square \ 2$ and $U(x,\square_j \parallel (s))$ is the usual Euclidean norm in $r=1 \square_x r$ R^n .
Equation (1.1) is supplemented with the following boundary conditions $\Box U(x,t)$
$\Box\Box(x,t)U(x,t) = 0, \ (x,t)\Box\Box\Box\Box R_{\Box}, (1.2)$
\square where \square is the unit exterior normal vector to \square and $\square(x,t)$ is positive continuous function on \square \square and
$U(x,t) = 0, (x,t) \square \square \square \square R_{\square}. (1.3)$ In what follows, we always assume without mentioning that $(A_1) r(t) \square C^{\square}(R_{\square};R_{\square}), a(t), a_i(t) \square C(R_{\square};R_{\square}), i = 1,2,m;$ $(A_2) \square_j, \square_i \square C(R_{\square};R), \lim_j (t) = \lim_i (t) = \square, i = 1,2,m, j = 1,2,,k;$ $t \square \square t \square \square \qquad $
(A ₃) $p_j \square C(G;R)$ and $p_j(t) = min_x \square \square p_j(x,t), j \square I_k = \square 1,2,,k \square;$ (A ₄) $F \square C(G;R^n), f_H(x,t) \square C(G;R)$ and $\square f_H(x,t)dx \square o;$
(A_5) $f_j \square C(R_{\square};R)$ are convex and non decreasing in R with $uf_j(u) > 0$ for $u \square 0$ and there exist positive $f_j(u)$
The study of H-oscillatory behavior of fractional partial differential equation is initiated in this paper. Our approach is to reduce multi-dimensional problems for (1.1) to one dimensional oscillation problems for scalar functional fractional differential inequalities. The purpose of this paper is to establish some new H-oscillation criteria for equation (1.1) with (1.2) and equation (1.1) with (1.3) by using a generalized Riccati technique and integral averaging method. Our results are essentially new. 2 Preliminaries In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some notations which are useful throughout this paper. There are serveral kinds of definitions of fractional derivatives and integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-axis R_{\square} . The following notations will be used for the convenience. $u_H(x,t) = \langle U(x,t), H, f_H(x,t) = \langle F(x,t), H, f_H(x,t) \rangle$
$V_{H}(t) = \qquad \overline{\square} u_{H}(x,t) dx, where \qquad \overline{\square} = \square dx. \qquad (2.1)$
Definition: 2.1 By a-solution of (1.1) , (1.2) and (1.3) we mean a non trivial function $_$
$\overline{U}(x,t)\Box C^2\Box(G;R^n)\Box C^2(G\ \Box[t^{\circ}_{\Box 1},\Box);R^n)\Box C(G\ \Box[^{\sim}\ t_{\Box 1},\Box);R^n)$ and satisfies (1.1) on G and the boundary conditions (1.2) and (1.3), where $t^{\circ}_{\Box 1}=min^{\Box}\Box$ 0, min \Box inf $\Box_i(t)\Box^{\Box}\Box$, $^{\sim}t_{\Box 1}=min^{\Box}\Box$ 0, min \Box inf $\Box_j(t)\Box^{\Box}\Box$.
□ 1□ i □ m □ t □ o □□ □ 1□ j □ m □ t □ o □□ Definition: 2.2 Let H be a fixed unit vector in R^n . A solution $U(x,t)$ of (1.1) is said to be H -oscillatory in
<i>G</i> if the inner product $\langle U(x,t),H\rangle$ has a zero in $\square\square(t,\square)$ for any $t>0$. Otherwise it is H-nonoscillatory. Definition: 2.3 The Riemann-Liouville fractional partial derivative of order $0<\square<1$ with respect to t of a function $u(x,t)$ is given by Copyright: © 2023 Continental Publication

	$D^{\square}_{\square,t}u(x,t) := {}^{\square}$	$\Box^t(t \ \Box v)^{\Box\Box}u(x,$	v)dv,	(2.2)	VOI. 11 IVO. 2 IIII p	1 4001. 0.000
provi Defin	$(1 \square \square)$ 0 ded the right hand side ition: 2.4 The Rieman lf-axis $^R\square$ is given by $t \square \square 1$: <i>R</i> □ □ <i>R</i> on
$I\Box y(t)$	$:= \qquad \Box \ (t \ \Box v) \qquad y$	$(v)dv for \qquad t > 0, (2)$.3)			
Defin	o led the right hand side ition: 2.5 The Riema half-axis ^R □ is given b	nn-Liouville fractiona		ve of order [☐ > o of a function	n $y:R_{\square}\;\square\;R$
Jı.	$D^{\square}\Box y(t) := \Box\Box\Box$	$I_{\square}^{\square\square\square\square\square}y\square(t)$ for	r t > 0	,	(2.4)	$d\Box\Box\Box$
functi	ded the right hand side on of \square .	_	on ^R □ wh	nere □□□ i	s the ceiling	where <i>m</i> is a positive integer.
t 0	$K(t) := \square (t \square s)^{\square \square} y(t)$	(s) ds for $\Box\Box$ (0,1) ar	d t > 0		(2.5)	3 H-
Then	$K\square(t) = \square(1\square\square)D^\square$	$\Box y(t)$ for $\Box\Box$ (0,1) and	d t > 0		(2.6)	
	na: 2.2 [10] If X and Y $mXY^{m\Box_1} \Box X^m \Box$ (m ation of the problem	\Box 1) Y^m ,	n		(2.7)	
Lemr	egin with the following na: 3.1 Assume that (a) . (i) If $^{u}_{H}(x,t)$ is eventum	A_1) $\square(A_5)$ hold. Let H				
i=1	$D^{\square}_{\square,t} \square r(t) D^{\square}_{\square,t} u_H(x)$	$(x,t)\Box\Box a(t)\Box u_H(x,t)$	$\Box \Box a_i(t)$	$\Box u_H(x,\Box_i(t))$)	
k		s) $u_H(x,\square_j(s))ds\square$	$\exists u_H(x,\Box_j)$	$(t)) \Box f_H(x,t)$). (3.1)	
j=1 (ii)If ¹ m	\Box \circ \Box	gative, then $u_H(x,t)$ sa	tisfies the	e scalar fracti	onal partial inequ	ality
	$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_{H}(x)$	$(x,t)\Box\Box a(t)\Box u_H(x,t)$	$\Box \Box a_i(t)$	$\Box u_H(x,\Box_i(t))$)	
i=1 k □	t \square	s) $u_H(x, \square_i(s))ds\square$	$\exists u_H(x,\Box_i)$	$(t)) \Box f_H(x,t)$). (3.2)	
j=1 Proof. m	Let $u_H(x,t)$ be eventual					

Copyright: © 2023 Continental Publication

Journal of Statistical and Mathematical Sciences Vol. 11 No. 2 | Imp. Factor: 6.806 $D^{\square}_{\square,t} \square r(t)D_{\square}^{\square}_{\cdot} \wedge U(x,t) + \mathcal{H} \square = a(t) \square \langle U(x,t), H \square \langle \square a_i(t) \square \rangle \qquad U(x,\square_i(t)) + \mathcal{H}$ t $\square \square p_j(x,t) f_j \square \square (t \square s) \ U(x,\square_j(s)) \ ds \square \ U(x,\square_j(t)), H \square F(x,t), H,$ that is, $D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_H(x,t)\square = a(t)\square u_H(x,t)\square \square a_i(t)\square u_H(x,\square_i(t))$ $\Box \Box p_{j}(x,t) f_{j} \Box \Box t(t \Box \Vert s) \Box \Box U(x,\Box_{j}(s)) ds \Box \Box u_{H}(x,\Box_{j}(t)) \Box f_{H}(x,t). \quad (3.3)$ By (A_3) , we have $p_j(x,t)f_j \parallel \Box \Box (t \square s)U(x,\Box_j(s)) ds \Box u_H(x,\Box_j(t))$ _ o__ $\Box p_j(t) f_j \Box \Box (t \Box s)U(x,\Box_j(s)) ds \Box u_H(x,\Box_j(t)),$ \square o \square since $f_j \square C(R_\square, R)$, j = 1, 2...k, we have $u_H(x, \square_j(s)) \square U(x, \square_j(s))$, therefore $p_j(t)f_j \parallel \Box \Box (t \square s)U(x,\Box_j(s)) ds \Box u_H(x,\Box_j(t))$ $\square p_j(t) f_j \square \square (t \square s)$ $u_H(x, \square_j(s)) ds \square u_H(x, \square_j(t)), j = 1, 2, ..., k. (3.4)$ Using (3.4) in (3.3), we get $D^{\square}_{\square,t} \square r(t) D^{\square}_{\square,t} u_H(x,t) \square \square a(t) \square u_H(x,t) \square \square a_i(t) \square u_H(x,\square_i(t))$ t $\square \square p_i(t) f_i \square \square (t \square s) \quad u_H(x,\square_i(s)) ds \square u_H(x,\square_i(t)) \square f_H(x,t).$ $\square j=1$ Similarly, let $u_H(x,t)$ be eventually negative, we easily obtain (3.2). The proof is complete. The inner products of (1.2), (1.3) with H yield the following boundary conditions. $\Box u^{H(x,t)} \Box \Box (x,t)u_H(x,t) = 0, \quad (x,t)\Box \Box \Box \Box R_{\Box},$ $u_H(x,t) = 0$, $(x,t) \square \square \square \square R_{\square}$. $(1.3)\square$

Lemma: 3.2 Assume that $(A_1) \square (A_5)$ hold. Let H be a fixed unit vector in \mathbb{R}^n . If the scalar fractional partial inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality (3.2) has no eventually negative solutions satisfying the boundary conditions (1.2) \square or (1.3) \square , then every solution U(x,t) of the problem (1.1),(1.2) or (1.1),(1.3) is H-oscillatory in G. Proof. Suppose to the contrary that there is a H-nonoscillatory solution U(x,t) of (1.1),(1.2) or (1.1),(1.3) in G, then $u_H(x,t)$ is eventually positive or $u_H(x,t)$ is eventually negative. If $u_H(x,t)$ is eventually positive, then by Lemma 3.1 $u_H(x,t)$ satisfies the boundry condition (1.2) \square or (1.3) \square . This contradicts the hypothesis. The similar proof follows when $u_H(x,t)$ is eventually negative. **Theorem: 3.1** Assume that $(A_1) \square (A_5)$ and (A_6) $min_{i\square I}\square\square_i(t)\square=\square(t)\square t$.

Copyright: © 2023 Continental Publication

i=1k

i=1

m

i=1k

j=1

 $\Box t$

 $\Box t$

 $\Box t$

 $\Box t$

□ 0

m

i=1

k

□ 0

ПП

K		
(A_7) $u_H(x,t) \square L$ hold . If the fractional differential inequality		
• •	(0.5)	k
$D^{\square}_{\square} \square r(t)D^{\square}_{\square}V_{H}(t)\square \square L\square p_{j}(t)f_{j}(K_{H}(t))\square o,$	(3.5)	j=1
<i>j</i> =1 has no eventually positive solutions and the fractional differential inequality		has no
		eventually
k	(()	negative
$D_{\square}{}^{\square}\Box r(t)D_{\square}{}^{\square}V_{H}(t)\Box\Box L\Box p_{j}(t)f_{j}(K_{H}(t))\Box o,$	(3.6)	,
solution $U(x,t)$ of (1.1) and (1.2) is H-oscillatory in G . Proof. Suppose to the contrary that there exists a solution $U(x,t)$ of (1.1), (1.2) voscillatory in G . Without loss of genearality, we may assume that $u_H(x,t) > 0$ in $\square \square > 0$. Integrating (3.1) with respect to x over \square , we obtain m		
$\Box D^{\square}\Box \Gamma(t)D^{\square}\Box u_{H}(t)\Box dx \Box a(t)\Box \Box u_{H}(x,t)dx \Box \Box a_{i}(t)\Box \Box u_{H}(x,\Box_{i}(t))dx$ $\Box \Box \Box \Box$ $i=1$		
$\stackrel{\smile}{k}$ t \square \square		
$\square \square p_j(t) \square f_j \square \square (t \square s) u_H(x,\square_j(s)) ds \square u_H(x,\square_j(t)) dx \square \square f_H(x,t) dx, t \square$	$\exists t_0$	(3.7)
$j=1$ \square \square \square \square		(3.7)
Using Green's formula and boundary condition (1.2) ☐ yield that		
$\Box u(x,t)$		
$\square \square u_H(x,t)dx = \square \square \qquad dS = \square \square \square (x,t)u_H(x,t)dS \square \text{ o,} t \square t_0 \text{ (3.8)}$		
and $\Box u_H(x,\Box_i(t))dx = \Box \Box u^{H(x,\Box_i(t))} dS = \Box \Box \Box (x,t)u_H(x,\Box_i(t))dS \Box 0,$		
$\Box \Box u_H(x,\Box_i(t))ux - \Box \Box u \xrightarrow{\iota_i(x,t)} us - \Box \Box \Box (x,t)u_H(x,\Box_i(t))us \Box 0,$		
$i = 1, 2,, t \square t_0.$ (3.9)		
By using Jensen's inequality (A_6) , (A_7) and (2.1) , we get		
$\Box f_j \Box \Box (t \Box s) u_H(x, \Box_j(s)) ds \Box u_H(x, \Box_j(t)) dx$		
$\square \ Lf_j \square_\square \square \square \square \square_\square \square_0 t \ (t \square \ s)^{\square\square} u_H(x,\square_j(s)) ds^\square \square_\square dx_{\square\square} \square^\square $ $\square \ Lf_j \square \square \square t(t \square \ s) \square \square \square \square \square \square H(x,\square_j(s)) dx \square \square ds \square$		
$\Box L\Box dxf_j\Box\Box\Box t(t\Box s)\Box\Box\Box\Box uH(x,\Box j(s))dx(\Box dx)\Box 1\Box\Box ds\Box\Box$		
$\Box L\Box dxf_j\Box\Box (t\Box s) V_H(\Box_j(s))ds\Box$		
$\square \square 0 \square$ $\square \ L\square \ dxf_j(K_H(t)) \ t \ \square \ t_0. \tag{3.10}$		
$\Box L\Box dx f_j(K_H(t)) \ t \Box t_0. \tag{3.10}$		
Also by (A_4) ,		
$\Box f_H(x,t)dx \Box 0. (3.11)$		
In view of (2.1), (3.8)-(3.11), (3.7) yield		
k		
Copyright: © 2023 Continental Publication		

	DD				oi. 11 No. 2 Imp	i. Factor: 6.806
<i>j</i> =1	$D^{\sqcup}\Box \sqcup r(t)D^{\sqcup}\Box V$	$(H(t) \sqcup \sqcup L \sqcup p_j)$	$(t)f_j(K_H(t)) \square 0.$	(3.12)		
There where	$u_H(x,t) < 0$ in \square is now complete.	$\square[t_0,\square)$ can be Theorem: 3.2	ve solution of (3.5). treated similarly and Suppose that the co	d we are also g	etting a contra	
	$\Box to \Box \Box r(s)$	$\Box\Box\Box ds = \Box$	(3.13)			
			positive function \Box \Box \Box \Box $ds = \Box$, (3.			
			$(s)^{\square}_{\square}$ very solution of $U(x,t)$	t) of the proble	m (1.1),(1.2) is	H-oscillatory
Proof.			e exists a solution $U(x)$ eality we may assume			
			solution of (3.5). The lows from (3.5) that	en there exists	$t_1 \square t_0$ such th	$at V_H(t) > 0$
		ŕ	$f_j(t)f_j(K_H(t)) < 0$	for $t \square [t_1,$	□). (3.15)	k Suppose
<i>j</i> =1 Thus	$D^{\square}\Box V_{H}(t)$ \square o or	$D^{\square} \square V_H(t) < 0,t$	$t \square t_1$ for some $t_1 \square t_0$. We now clain	n that	not, then $D^{\square} \cup V_H$ (t)
	${}^{D\square}\Box V_H(t) \ \Box \ \mathrm{o},$	for $t \square t_1$.			(3.16)	< o and there exists
	$r(t)^{D\square}\square V_H(t) < r$ e $c > 0$ is a constant $r(t)$	$(t_2)^{D\square}\square V(t_2) := \mathbb{I}$ at for $t \square [t_2, \square)$. $\square c \square$	ce $r(t)D^{\square}_{\square}V_{H}(t)$ is s $_{\square}^{\square}c,$ Therefore from (2.6 $for t\;\square[t_{2},\square).$	•	ing on $[t_1, \square)$. I	
Then	- □) □ , we get					
□1∟			\Box) for $t \Box [t_2]$,□).		
	rating the above in $G \subseteq K(t) \subseteq K$	nequality from t_2	to t , we have			
	$\Box_{t2} \Box \Box \Box r(s) \Box$ < $KH(t2)$ for		$H_{\mathcal{C}}\square(1\square\square H)^{2}$			
$ds \square$ This generates $r(t)D^{\square}$	contradicts (3.13), alized Riccati subs $\Box V^{H}(t)$ for $W(t) = \Box(t)$	$\begin{array}{c}) \; $	$H(\square t 2 \square)) < \square_{t} [t]$ $(t) \square o \text{ for } t \square [t_1, \square]$ (3.17)		ne the function	<i>W</i> (<i>t</i>) by the
Copyrig	ht: © 2023 Continen	tal Publication				

$\overline{K_H(t)}$ Then we have $W(t) > 0$ for $t \square [t_1, \square)$. From (2.6),(2.7), (3.5)and (A_5) it follows that $D\square \square W(t) = \square(t) D\square \square \square r(t) D\square \square VH(t) \square \square D\square \square \square \square (t) \square \square r(t) D\square \square VH(t)$:)
$\overline{K_{H}(t)} \square K_{H}(t) \square$ $\square \square \square (t) L \square k p_{j}(t) f_{j}(KH(t)) \square \square KH(t) D \square \square (t) \square \square (t) D \square \square KH(t) \square r(t) D \square$	$\Box VH(t)$
$\overline{KH(t)} \qquad \overline{\square} \square \square \qquad \overline{KH_2(t)} \qquad \square \square \square$ $j=1 \qquad \underline{\hspace{1cm}}$	
$k \qquad \Box \qquad \Box $ $\Box L\Box(t)\Box\Box_j p_j(t) \Box D^{\Box\Box(t)}W(t) \Box^{D\Box KH(t)}W(t). (3.18)$	
$\overline{j=1} \Box(t) KH(t)$ Let $W(t) = W \sim (\Box), \Box(t) = \Box \sim (\Box), p_j(t) = \sim p_j(\Box), K_H(t) = K \sim_H(\Box)$. Then $D^{\Box} \cup W(t) = W \sim_{\Box}(\Box), D^{\Box} \cup (t) = \Box \sim_{\Box}(\Box)$. Then the above inequality becomes $k \sim_{\Box} \sim_{\Box}(\Box) \cup_{\Box}(\Box) \cup_{\Box}($	~
$\overline{\square}(\overline{\square}) K(\overline{\square})$	
) j
Using Lemma 2.2 and (3.20) in $\sqrt{3.19}$, we have $-\sqrt{}$	(1□□) ~
k $\sim r(\square)\square \square \sim \square(\square)\square^2$	1 $^{\sim}r(\square)$
$ \stackrel{\sim}{W} \square (\square) \square \square L \square (\square) \square \square_j \stackrel{\sim}{p_j} (\square) \square^{-1} \qquad . $ (3.21)	Taking $m = 2$,
$X = \sim (\square) \sim r(\square) W(\square), Y = 2 \square (1 \square \square) \square \sim (\square) \square \square (\square). \tag{3.20} \square$	m – 2,
$\overline{j=1}$ 4 \square $(1$ \square $)$ \square $(\square$) \square Integrating both sides of the above inequality from \square_1 to \square , we obtain \square	k □ ~pj
\overline{j}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Taking the limit supremum of both sides of the above inequality as $\Box\Box\Box$, we get $\limsup\Box\Box\Box\Box L\Box\sim(s)\Box k\Box \sim pj(s)\Box$ 1 $\sim r(s)\Box\Box\sim\Box(\sim s)\Box$ 2 $\Box\Box ds < W\sim(\Box$ 1) $<$ [\Box ,
\overline{j} which contradicts (3.14) and completes the proof. Theorem: 3.3 Suppose that the conditions $(A_1) \square (A_7)$ and (3.13) hold. Futhermore, suppose the exists a positive function $\square \square C\square((0,\square);R\square)$ and a function $P\square C(D,R)$ where $D:=\square(t,s):t\square$ such that $P(t,t)=0$ for $t\square t_0$,	hat there $s \square t_0 \square$
Copyright: © 2023 Continental Publication	

2. $P(t,s) > 0$ for $(t,s) \square D_0$, where $D_0 := \square(t,s): t > s \square t_0 \square$ and P has a continuous and non-positive $\square P(t,s)$
partial derivative $P_s\square(t,s)=$ on P_0 with respect to the second variable and satisfies $\square s$
limsup 1 $\square P(\square,s)\square\square L\square \sim (s)\square k\square \sim pj(s)\square 1 r\sim (s)\square 2\square \square ds$ \square , (3.22)
\overline{j} \square
where \Box_j are defined as in Theorem 3.2. Then all the solutions of $U(x,t)$ of the problem (1.1),(1.2) is Hoscillatory in G . Proof. Suppose that $U(x,t)$ is H-nonoscillatory solution of (1.1),(1.2). Without loss of generality we may assume that ${}^u_H(x,t)$ is an eventually positive solution . Then ${}^V_H(t)$ is an eventually positive solution of (3.5). Then proceeding as in the proof of Theorem 3.2, to get (3.21) $W^*\Box(\Box)\Box\Box \Box L\Box^*(\Box)\Box k\Box_j P_j(\Box)\Box r_*(\Box)\Box\Box^*\Box(\Box^*)\Box r_*(\Box)\Box $
$\overline{j=1}$ $\overline{4}$ \square $(1\square\square)\square(\square)$ multiplying the previous inequality by $P(\square,s)$ and integrating from \square_1 to \square for $\square\square[\square_1,\square)$, we obtain $\square \square P(\square,s)\square \square L\square \sim (s)\square k\square \sim pj(s)\square \ 1 \ r \sim (s)\square \square \sim \square(\sim s)\square \ 2 \square \square ds \square \square \square P(\square,s)W \sim (s)W \sim (s)\square \square $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\overline{P(\Box,\Box_1)_{\Box}}$ \Box \Box $j_{=1}$ \downarrow
which is a contradiction to (3.22) . The proof is complete. Corollary 3.1 Assume that the conditions of Theorem 3.3 hold with (3.22) replaced by \Box k
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c} \hline \Box \Box \Box P(\Box,\Box 1)\Box & j=1\\ \hline 1 & \\ \Box \end{array} $
1 $r(s) \square \square r(s) \square^2$ $limsup \square P(\square,s) \sim ds < \square,$
$\overline{\square_{\square\square}P(\square,\square_1)_{\square}} \qquad \square(1\square\square)\square(s)$
then every solution $U(x,t)$ of (1.1),(1.2) is H-oscillatory in G . Next, we consider the case \Box 1

Copyright: © 2023 Continental Publication

\Box $ds < \Box$, (3.23)
which yields that (3.13) does not hold. In this case, we have the following result. Theorem: 3.4 Suppose that the conditions $(^{A_1}) \square (^{A_7})$ and (3.23) hold and that there exists a positive function $\square \square C^\square((0,\square);R_\square)$ such that (3.14) holds. Futhermore, assume that for every constant $\square \square \square$
$\square \square \neg r (1u) \square \square j \square \neg p j (s) ds \square \square du = \square. $ (3.24)
$\Box T$ \Box $j=1$ $\Box T$ \Box
Then every solution of $V_H(\Box)$ of (3.5) is H-oscillatory or satisfies $\lim \Box \Box \Box \Box s \Box V_H(s)ds = 0$. Proof Suppose
o that $U(x,t)$ is H-nonoscillatory solution of (1.1),(1.2). Without loss of generality we may assume that $u_H(x,t)$ is an eventually positive solution . Then $V_H(t)$ is an eventually positive solution of (3.5). Then proceeding as in the proof Theorem 3.2, there are two cases for the sign of $D^{\square} \cup V_H(t)$. The proof when $D^{\square} \cup V_H(t)$ is eventually positive is similar to that of Theorem 3.2 and hence is omitted. Next, assume that $D^{\square} \cup V_H(t)$ is eventually negative. Then there exists $t_3 \square t_2$ such that $D^{\square} \cup V_H(t) < 0$ for $t \square t_3$. From (2.6), we get $K \square_H(t) = \square(1 \square \square)D^{\square} \cup V_H(t) < 0$, for $t \square t_3$.
Then $K_H \square (\square) = \square (1 \square \square) V_H \square (\square) < o$ for $\square \square \square_3$. Thus we get $\lim K_H (\square) := M_1 \square$ o and $K_H (\square) \square M_1$. We claim that $\square \square \square$
$M_1 = 0$. Assume not, that is, $M_1 > 0$ then from (A_5) , we get
$D^{\square}_{\square} \square r(t) D^{\square}_{\square} V_{H}(t) \square \square \square L \square p_{j}(t) f_{j} \square K_{H}(t) \square$ $j=1$ k
$\Box \Box LM_1\Box \Box_j p_j(t), for t \Box [t_3, \Box).$
<i>j</i> =1 Let $r(t) = {}^{\sim}r(\Box), V_H(t) = V_{H}(\Box), p_j(t) = {}^{\sim}p_j(\Box)$. Then $D^{\Box} \cup V_H(t) = V_{H}^{\sim} \cup (\Box), D^{\Box} \cup r(t)D^{\Box} \cup V_H(t) = \Box {}^{\sim}r(\Box)V_{H}^{\sim} \cup (\Box) \cup \Box$. Using these values, the above inequality becomes $\Box {}^{\sim}r(\Box)V_{H}^{\sim} \cup (\Box) \cup \Box \Box \Box LM_{1} \cup k \cup j {}^{\sim}p_j(\Box), for \Box \Box [\Box_3, \Box)$. Integrating both sides of the last inequality from \Box_3 to \Box , we have j =1
$ \Box \Box \Box \sim \Box \Box \Box \Box LM \Box \neg pj (s) ds \sim r (s) V H \Box (s) ds \Box \Box LM \Box j \Box 3 $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Copyright: © 2023 Continental Publication

$k \square K \square LM1 \square j \square \sim p j (s) ds$	V 01. 11	110. 2 mip. 1 accor. 0.000
$\sim p(s)ds$. $\square \square LM_1 \square \square j \square j$ Hence from (2.6), we get $\square H(\square \square $	$])=V\sim H\square\ (\square)\ \square$	$j=1\sim r(\square)\square$.
$\overline{j=1}$ \square_3 $\square(1$ \square	\square $K_H(\square_4)\square\square(1\square$	\Box) $LM_1\Box$ 4 ~ $r(u)$
Letting $\square \square \square$, from (3.24), we get $\lim K_H(\square) = \square \square$. This $M_1 = 0$, that $\square \square \square$	contradicts $K_H(\square)$	> o. Therefore we have
~ \square \square \square ~ is, $\lim K_H(\square) = 0$. That is, $\lim \square (\square \square s) V$ \square \square \square \square \square	$V_H(s)ds = 0$. Hence t	he proof.
4 H-Oscillation of the problem (1.1),(1.3)		
In this section we establish sufficient conditions for the osci we need the following: The smallest eigen value \Box_0 of the in \Box , $\Box(x) = 0$ on \Box , is positive and the positive in \Box . Theorem: 4.1 Let all the conditions of Theorem 3.2 and 3 (1.1) and (1.3) H-oscillates in G . Proof. Suppose that $U(x,t)$ (1.3). Without loss of generality we may assume that $U(x,t)$ (1.3) without loss of the Equation (3.1) by $\Box(x) > 0$ and $U(x,t)$ we obtain for $U(x,t)$	e Dirichlet problem. The corresponding eigenvalue of the corresponding eigenvalue of the corresponding eigenvalue of the corresponding with the corresponding with the corresponding $a(t) \square \square^u_H(x,t) \square (x)$ of $a(t) \square \square^u_H(x,t) \square (x)$ of $a(t) \square (x) dx \square \square^u_H(x,t)$	gen function $\Box(x) = 0$ gen function $\Box(x)$ is ery solution of $U(x,t)$ of ry solution of (1.1) and t_0,\Box) for some $t_0 > 0$. ith respect to x over \Box ., $dx \Box \Box a_i(t) \Box \Box u_H(x,\Box_i)$
Using Green's formula and boundary condition (1.3) \square it for $\square \square u_H(x,t)\square(x)dx = \square u_H(x,t)\square\square(x)dx = \square\square_0\square$, $t \square t_1$ (4.2)
and $\Box u_{H}(x,\Box_{i}(t))\Box(x)dx = \Box u_{H}(x,\Box_{i}(t))\Box\Box(x)dx$ $\Box \Box \Box$ $t \Box t_{1}, i = 1,2,m. (4.3)$		
By using and Jensen's inequality, $(^{A_6})$ and $(^{A_7})$ we get $^{u}_H(x,\Box_j(t))\Box(x)dx$	$\Box f_j \Box \Box c (t \Box c)$	$(s)^{\square \square u_H}(x, \square_j(s))ds \square \square$
Copyright: © 2023 Continental Publication		

11

	voi. 11 No. 2 IIIIp. Factor: 0	0.000
$ \Box Lfj \Box \Box \Box ot \ \Box \Box \Box \Box \Box uH(x,\Box j(s)) $,	
$ \Box \qquad \Box t \qquad \Box \Box \Box \qquad u_H(x,\Box_j(s))\Box(x)dx(\Box\Box(x)dx) $ $ \Box L \Box(x)dxf_j\Box \qquad (t\Box s) \qquad \Box$ $ \Box \qquad \Box \qquad \Box \qquad \Box \qquad \Box$	$\Box^{\square}\Box\Box ds^{\square}\Box$. Set	
$ \begin{array}{ccc} & V_H(t) = \square \ u_H(x,t) \square (x) dx \square \square \square \square (x) dx \square \square, \\ & \square \square \square \square \square t \square \square \square \end{array} $	$t \square t_1$. (4.4)	
Therefore, $\Box f_j \Box \Box (t \Box s)$ $u_H(x, \Box_j(s)) ds \Box u_H(s) = \int_{\mathbb{R}^n} ds ds ds$	$_{H}(x,\Box_{j}(t))\Box(x)dx\Box L\Box\Box(x)dxf_{j}(K_{H}(t)),t$	
$\Box \Box O \qquad \Box \Box$ $By (^{A}_{5}), \Box f_{H}(x,t)\Box(x)dx \Box O.$	(4.6)	
k In view of (4.4), (4.2)-(4.6), (4.1) yields D^{\square}_{\square} $\square r(t)$ L j =1 for t \square t ₁ . Rest of the proof is similar to that of omitted.		
Corollary 4.1 If the inequality (4.7) has no eventua (1.1) and (1.3) is H-oscillatory in G . Corollary 4.2 Let the conditions of Corollary 3.1 h Hoscillatory in G .		
Theorem: 4.2 Let the conditions of Theorem 3.4 oscillatory	hold; Then every solution $V_H(\Box)$ of (4.7) is	s H
\square ~ or satisfies $\lim \square \square \square \square S \square V_H(s)ds = 0$. The pare similar to that of in \square \square	proofs of Corollaries 4.1 and 4.2 and Theorems	5 4.2
Section 3 and hence the details are omitted.		
5 Examples In this section we give an example to illustrate the Consider the vector fractional partial differential equal \Box		e 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$ds \square \square \square U_{\square} \square x, t \square \square_{2} \square \square \square \square F(x,t), (5.$	1)
$\sqrt{3}$ $_{0}\square$ $_{2}\square$ $_{\square}$ $_{(x,t)\square G}$, where $G = (0,\square)\square(0,\square)\square(0,\square)$, with the $\square\square\square$ \square \square \square \square \square \square \square \square] o.
$U(0,t) = \square u_{2}, (0,t) \square \square$		
Copyright: © 2023 Continental Publication		

Journal of Statistical and Mathematical Sciences

Vol. 11 No. 2 | Imp. Factor: 6.806

S. Abbas, M. Benchohra and J.J. Nieto, Global Attractivity of Solutions for Nonlinear Fractional Order RiemannLiouville Volterra-Stieltjes Partial Integral Equations, Electronic Journal of Qualitative Theory of Differential Equations, **81** (2012) 1-15.

Journal of Statistical and Mathematical Sciences

Vol. 11 No. 2 | Imp. Factor: 6.806

- D. Baleanu, K. Diethelm, E.Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, **3** (2012) 473-485.
- D. Baleanu, OG. Mustafa and D.O' Regan, A Kamenev Oscillation Result for a Linear (1□□)-order Fractional Differential Equations, Applied Mathematics and Computation, **259** (2015) 374-378.
- Da-Xue Chen, Oscillation Criteria of Fractional Differential equations, Advances in Difference Equation, **33** (2012) 118.
- Da-Xue Chen, Oscillatory Behavior of a Class of Fractional Differential Equations with Damping, UPB Scientific Bulletin, Series A, **75** (2013) 107-118.
- Ju.I. Domslak, On the Oscillation of Solutions of Vector Differential Equations, Soviet Mathematics Doklady, **11** (1970) 839-841.
- Yu.I. Domshlak, Oscillatory Properties of Solutions of Vector Differential Equations Differential Equations, 7 (1971) 728-734.
- Emil Minchev , Norio Yoshida, Oscillations of Solutions of Vector Differential Equations of Parabolic Type with Functional Arguments, Journal of Computational and Applied Mathematics, **151** (2003) 107-117.
- S.R. Grace, R.P. Agarwal, P.J.Y. Wong, A. Zaffer, On the Oscillation of Fractional Differential Equations, Fractional Calculus and Applied Analaysis **15** (2012) 222-231.
- G.H. Hardy, J.E. Littlewood and G.Polya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, Mass, USA, (1988).
- A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, The Netherlands, **204** (2006).
- J.T. Machado, V. Kiryakova and F. Mainardi, Recent History of Fractional Calculus, Communications in Nonlinear Science and Numerical Simulation, **16** (2011) 1140-1153.
- F. Mainardi, Fractional Calculus and Waves in Linear Viscoelascity, Imperial College, Press, London, UK, (2010).
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993).
- E.S. Noussair, C.A. Swanson, Oscillation of Nonlinear Vector differential Equations, Annali di Matematica Pura ed Applicata, **109** (1976) 305-315.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, (1999).
- P. Prakash, S. Harikrishnan, Oscillation of Solutions of Impulsive Vector Hyperbolic Differintegral Equations with Delays, Applicable Analysis **91** (2012) 459-473.
- P. Prakash, S. Harikrishnan, J.J. Nieto and J.H. Kim, Oscillation of a Time Fractional Partial Differential Equation, Electronic Journal of Qualitative Theory of Differential Equation, 15 (2014) 1-10.

Iournal of Statistical and Mathematical Sciences

Vol. 11 No. 2 | Imp. Factor: 6.806

- S. Harikrishnan, P. Prakash and J. J. Nieto, Forced Oscillation of Solutions of a Nonlinear Fractional Partial Differential Equation, Applied Mathematics and Computation, **254** (2015) 14-19.
- V. Sadhasivam and J. Kavitha, Forced Oscillation for a Class of Fractional Parabolic Partial Differential Equation, Journal of Advances in Mathematics, **11** (2015) 5369-5381.
- V. Sadhasivam and J. Kavitha, Interval Oscillation Criteria for Fractional Partial Differential Equations With Damping Term, Applied Mathematics, Scientific Research publishing, 7 (2016) 272-291.
- V. Sadhasivam and J. Kavitha, Forced Oscillation of Order Partial Differential Equations with Damping and Functional Arguments, International Journal of Pure and Applied Mathematics, **106** (2016) 89-107.
- Vasily E. Tarasov, Fractional Dynamics, Higher education press, Beijing and Springer-Verlag Berlin Heidalberg, 2010.
- Y. Wang, Z. Han and S. Sun, Comment on 'On the Oscillation of Fractional-order Delay Differential Equations with Constant Coefficients', Communication in Nonlinear Science, **19** (2014) 3988-3993.
- Wei Nian Li, Maoan Han and Fan Wei Meng, H-Oscillation of Solutions of Certain Vector Hyperbolic Differintegral Equations with Deviating Arguments, Applied Mathematics and Computation, **158** (2004) 637-653.
- Wei Nian Li and Weihong Sheng, Oscillation Properties for Solutions of a Kind of Partial Fractional Differential Equations with Damping Term, Journal of Nonlinear Science and Applications, 9 (2016) 1600-1608.
- B. Zheng, Oscillation for a Class of Nonlinear Fractional Differential Equations with Damping Term, Journal of Advanced Mathematical Studies **6** (2013) 107-115.
- Zhenlai Han, Yige Zhao, Ying Sun and Chao Zhang, Oscillation for a Class of Fractional Differential Equation, Discrete Dynamics in Nature and Society, (2013) 1-6.
- Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, (2014).