

Journal of Statistical and Mathematical Sciences ISSN 3065-100X

Volume 11 Issue 1 January - March 2023 Impact Factor: 6.80

Enquiry: contact@continentalpub.online

Published by Continental Publication http://continentalpub.online/index.php/jsms

A COMPREHENSIVE ANALYSIS OF LOCAL COMPOSITE **QUANTILE REGRESSION IN DIFFUSION MODELS**

Dr. Wei Li

College of Mathematics and Information Science, Henan Normal University, 453007, Henan Province, P. R. China.

Abstract: In this paper, we delve into the realm of Composite Quantile Regression (CQR) for parameter estimation within the context of diffusion models. While CQR has found utility in classical linear regression models and general non-parametric regression models. it has yet to be explored extensively in the domain of diffusion models. The diffusion model we consider operates within the framework of a filtered probability space $(\Omega, F, (Ft)t \ge 0, P)$, described by the stochastic differential equation:

 $dXt = \beta(t)b(Xt)dt + \sigma(Xt)dWt$,

where $\beta(t)$ is a time-dependent drift function, $\sigma(\cdot)$ and $b(\cdot)$ are known functions. Notably, this model encompasses several renowned option pricing models and interest rate term structure models, including Black and Scholes (1973), Vasicek (1977), Ho and Lee (1986), and Black, Derman, and Toy (1990), among others.

Our exploration of CQR in diffusion models seeks to provide a robust framework for estimating regression coefficients in scenarios with intricate dynamics. By extending CQR to this domain, we aim to enhance our understanding of parameter estimation in diffusion models and contribute valuable insights to financial modeling and related fields.

Keywords: Composite Quantile Regression, Diffusion Models, Parameter Estimation, Financial Modeling, Stochastic Differential Equation.

(1990) and so on. $\square(t)$

We allow being smooth in time. The techniques that we employ here are based on local linear fitting (see Fan and Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. In Section 2, we propose the local linear composite quantile regression estimation for the drift parameter and study its asymptotic properties. The asymptotic relative efficiency of the local estimation with respect to local least squares estimation is discussed in Section 3. The proof of result is given in Section 4.

Copyright: © 2023 Continental Publication

Introduction

Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression coefficients in classical linear regression models. More recently, Kai el.(2010) considers a regression general non-parametric models by using CQR method. However, to our knowledge, little literature has researched parameter estimation by CQR in diffusion models. This motivates consider us to estimating regression coefficients under the framework of diffusion models. In this paper, we consider the diffusion model on a filtered probability space $(\Box, F, (Ft)t\Box o, P)$

(1.1) $dX_t \square \square(t)b(X_t)dt \square \square(X_t)dW_t$, $\Box(t) W^t$ is the standard Brownian motion. $b(\Box)$ and $\Box(\Box)$ are known where is a time-dependent drift function and functions. Model (1.1) includes many famous option pricing models and interest rate term structure models, such Black as and Scholes(1973), Vasicek(1977), Ho and Lee(1986), Black, Derman and Toy

2. Local estimation of the time-dependent parameter $\{X^{ti}, i \Box 1, 2, \Box, n \Box 1\}$ $t^1 \Box t^2 \Box \Box \Box t^{n\Box 1}$. Denote
Let the data be equally sampled at discrete time points,
$Yti \square Xti \square 1 \square X ti$, $\square ti \square Wti \square 1 \square Wti$, and $\square i \square ti \square 1 \square ti$. Due to the independent increment
property of Brownian motion $Wt, \Box ti$ are independent and normally distributed with mean zero and variance ii . Thus, the discretized
version of the model (1.1) can be expressed as
$(2.1) Y_{ti} \square \square (t_i)b(X_{ti})\square_i \square \square (X_{ti})\square_i Z_{ti}$
Z^{ti} 1/ \square^i . The first-order discretized where are independent and normally distributed with mean zero and variance approximation error to
the continuous-time model is extremely small according to the findings in Stanton (1997) and Fan and
Zhang(2003), this simplifies the estimation procedure.
Suppose the drift parameter $\Box(t)$ to be twice continuously differentiable in t . We can take $\Box(t)$ to be local t o , we use the approximation linear fitting. That is, for a given time point
(2.2) \Box (t) \Box (t ₀) \Box (t ₀)(t \Box t ₀)
for t in a small neighborhood of t o. Let t denote the size of the neighborhood and t in t denote the size of the neighborhood and t denote t
weighted function. h and ${}^{K(\square)}$ are the bandwidth parameter and kernel function, respectively. Denoting ${}^{\square o} = {}^{\square (to)}$ and
$\Box_1 \Box\Box'(to)$, (2.2) can be expressed as
$ (2.3) \square(t) \square \square_0 \square \square_1(t \stackrel{\frown}{\square} t_0) . $ $\square(t) $
Now we propose the local linear CQR estimation of the drift parameter
k Let
$\square k = \underline{\hspace{1cm}}$
$\square \square k(r) \square \square kr \square \square I\{r \square 0\}, k \square 1,2,\square,q$, which are q check loss functions at q quantile positions: q
\square 1. Thus, $\square(t)$
following the local CQR technique, can be estimated via minimizing the locally weighted CQR
loss
$\begin{array}{cccc} q & n & Yti & \Box 1 \\ (2.4) & \Box \left\{ \Box \Box_{\Box k} \left\{ & [b(X_{ti})] & \Box \Box_{ok} & \Box \Box_{1}(t_{i} \Box t_{o}) \right\} K_{h}(t_{i} \Box t_{o}) \right\} \end{array}$
$t\underline{i} \Box t \underline{o}$) Kh ($ti \Box to$)= K (where h and h is a properly selected bandwidth. Denote the minimizer of the
locally weighted
$(\Box^{\circ}01,\Box^{\circ}02,\Box,\Box^{\circ}0q,\Box^{\circ}1)T$ CQR loss (2.4) by . Then, we let
q
$(2.5) \square^{}(t_0) \square^{1} \square \square^{}_{0k}$
\overline{q} $k\Box$ 1
We refer to \Box $$ (to) as the local linear CQR estimation of \Box (to) , for a given time point t o . To obtain
the \Box (\Box) estimated function , we usually evaluate the estimations at hundreds of grid points.
In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions. Throughout this paper, M denotes a positive generic constant independent of all other variables.

Copyright: © 2023 Continental Publication

 1 $k\square 1$

VOI. 11 NO. 1 Imp. Factor: 6.80
$b(\Box) \Box(\Box)$ (A1) The functions and in model (1.1) are continuous.
$K(\Box)$ (A2) The kernel function is a symmetric and Lipschitz continuous function with finite support $[\Box M, M]$
 h=h(n) □ o nh□o. (A3) The bandwidth and F(□) f(□) Let and be the cumulative density function and probability density function of the error, g(□) [a,b] respectively. denotes the density function of time, usually a uniform distribution on time interval. Define □ j □ □ u j K(u) du, □ j □ □ u j K²(u) du, j □ 1,2,□ and 1 q q □ kk' (2.6) R(q) □ 2 □ □
$\frac{-}{q k \Box 1 k' \Box} 1 f(ck) f(ck')$
$ck \square F^{\square_1}(\square k)$ and $\square kk' = \square k \square \square k' \square \square \square k$ k' . where
\Box ^(t^0) Theorem 2.1 Under assumptions (A1)-(A3), for a given time point t_0 , the local CQR estimation from (2.5) satisfies, (2.7) $E[\Box$ ^(t_0) \Box
$(2.8) Var[\Box^{}(t_0)] \Box^{1} \underline{\qquad}_{0} \Box^{0}(X^t) R(q) \Box^{0}(1) nh g(t_0) b(X_{t_0}) nh$
and, as $n \square \square$,
$(2.9) nh\{\Box^{}(t_0)\Box\Box(t_0)\Box^{}\Box^{}(t_0)\Box h^2\}\Box_L N(0,\underline{\qquad}_{2}\Box\Box^{})\qquad (X^t) R(q))$
$g(t_0)b(X_t 0)$ \square means convergence in distribution. where
3. Asymptotic relative efficiency We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect t the local linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-square errors(MSE).From \Box ^(t^o) . That is, theorem 2.1, we obtain the MSE
2
$(3.1) MSE[\Box^{}(t_0)] \Box [^1\Box''(t_0)\Box_2]^2 \Box ^1 \underline{\qquad \qquad _0} \Box \Box^0 (X^t) R(q) \Box o(h^4\Box ^1)$
$\frac{1}{2}$ $nh g(t_0)b(X_{t0})$ nh

Journal of Statistical and Mathematical Sciences

Vol. 11 No. 1 | Imp. Factor: 6.806

We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by

$hopt (t_0)] \square [\square \square 0 2(Xt0)R(q) _ $
$g(t_0)b \stackrel{2}{(X_{t0})}[\square"(t_0)\square_2]$
$g(t_0)b(X_0)[\Box(t_0)\Box_2]$
$\Box(t^{\rm o})$, denoted by $\Box^{LS}(t^{\rm o})$, is The MSE of the local linear least squares estimation of
2
$(3.2) MSE[\Box^{}_{LS}(t_0)] \Box [\Box^{}_{U}(t_0)\Box_2]^2h^4\Box^{}_{U}\underline{\qquad}_0\Box^{}_{U} \Box^{}_{U} (X^t) \Box o(h^4\Box^{}_{U})$
_
$\frac{1}{2}$ $nh g(t_0)b(X_{t0})$ nh
and the optimal bandwidth is
$\Box\Box\circ(V)$ 1 1
$\Box \Box 2(X)$ 1 $\underline{}_{0}$ $\underline{}_{5}$ $\underline{}_{5}$ $\underline{}_{5}$
hLS (to)] \square [2 2] n
$g(t_0)b\left(X_{t0}\right)[\square"(t_0)\square_2]$
. By straightforward calculations, we have, as $^{n\Box\Box}$,
$MSE[\Box^1_{LS}(t_0)] \Box [R'(q)]\Box^4_5$
$MSE[\Box^{}(t_0)]$
Thus, the ARE of the local linear CQR estimation with respect to the local linear least squares estimation is
$\Box \frac{4}{}$
$(3.3) ARE(\Box^{}(t_0),\Box^{}_{LS}(t_0)) \ \Box \ [R(q)]$
(3.3) reveals that the ARE depends only on the error distribution. The ARE we obtained is equal to that
in Kai el.(2010).
$ARE(\Box^{}(t^{o}),\Box^{}LS(t^{o}))$ for some commonly seen error distributions. Table 1 in Kai Table 3.1 displayed. (2010) can be seen as ARE for more error distributions.
Table 3.1: Comparisons of $ARE(\Box^{}(to),\Box^{}LS(to))$ for the values of q
Error $q \square 1 \ q \square 5$ $q \square 9 \ q \square 19$

N(0,1)	0.6968 0.9339	0.96590.9858	0.9980
	, , , , , , , , , , , , , , , , , , , ,		
Laplace	1.7411 1.2199	1.1548 1.0960	1.0296
0.9N(0,1)	4.0505 4.9128	4.70693.5444	1.1379
$\Box 0.1N(0,10^2)$			

From Table 3.1, we can see that the local linear CQR estimation is more efficient than the local linear least squares estimation when the error distribution is not standard normal distribution. When the error distribution is

$N(0,1)$ and $q \square 1,5,9,19,99$, the $ARE(\square^{(to)},\square^{LS}(to))$ is very close to 1, which demonstrates that the local linear
CQR estimation performs well when the error conforms to the standard normal distribution too.
4. Proof of result $\square S_{12} \square$
In order to prove theorem 2.1, we first give some notations and lemmas. Let $\Box S^{21} = S^{22}$, and $\Box \Box \Box$
\square 21 \square 22 \square , where S 11 is a q \square q diagonal matrix with diagonal elements $f(ck)$, k \square 1,2, \square , q , q
$S \square \square f(c)$
$S_{12} \square (\square 1f(c_1), \square 1f(c_2), \square, \square 1f(c_q))T$, $S_{21} \square S_{12}T$ and $S_{22} \square k \square 1k$. \square 11 is a $q \square q$ matrix with (k,k') -
$\square \square 0 \ k \ , k' \ , k,k' \square 1,2,\square,q, \square 12 \square (\square 1 \square kq' \square 1 \square 1k' \ , \square 1 \square qk' \square 1 \square 2k' \ , \square, \square 1 \square kq' \square 1 \square qk') T$
$\Box 21 = \Box 12' \Box 22 \Box \Box 2\Box kq,k' \Box 1\Box kk'$ element , and .
\square \square \square \square \square \square
k $0k$ 0 k 1 0 $u \square nh \square \square \square (t) \square to c$ $v \square h nh \square \square \square (t) \square to c$
Furthermore, let $\Box \Box b(X_{t0})$ $\Box \Box$, $\Box b(X_{t0})$
$ \begin{array}{c cccc} \hline 1 & \hline \end{array} t\underline{i} & \overline{\Box to} & \hline \end{array} di, k & \overline{\Box i,k} & \overline{\Box} & \overline{\Box} & \overline{\Box} & \overline{\Box} & \overline{\Box} & \overline{\Box} \\ $
$\square \square (Xti) \square (Xto) \square \square$
Define i,k to be ti k i,k $titi$ k . Let n 11 12 q q q q q q
$w1k \square ^{\vee} \square i, k \ Kh(ti \square to), k \square 1, 2,$ $nh \ i \square 1$, and $nh \ k \square 1 \ i \square 1$
Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following
term: $q \square n \square i^*, k \ Kh(ti \square to) \square q \qquad n \square i^*, k \ Kh(ti \square to)(ti \square to) \qquad q$
$L_{\mathrm{n}}(\square) \square \square u_{\mathrm{k}} \square \square \square \square v \square \widehat{\square} \square \square B_{n,k} \ (\square)$
$k \Box 1 \Box i \Box 1 \Box k \Box 1 i \Box 1 k \Box 1$
\square
\square
$\square \underline{1} \square^T S_n \square \square (W_n^*) T \square \square o_p(1)$
$\square = (u, u, \square, u, \square)$
q with respect to q , where
$1 \square \square X_t \square \qquad \overline{ \sqrt{nh}} \qquad \qquad \overline{h\sqrt{nh}}$

Bn,k \square
$\circ \Box \Box Z \Box c \Box$
$\overline{}$ $\phantom{$
$ \Box^{n} b \Box X_{t} i \Box \Box Sn,11 \Box \Box \Box Kh \Box t i \Box t 0 \Box \Box i \Box \Box S11 \text{ with } \Box \Box i \Box 1 nh \Box X t \Box \Box , Sn,21 \Box SnT ,12 , $
$Sn,12 \square \square \square \square n \ Kh \square ti \square to \square t\underline{i} \square t\underline{o} _b \square X \square ti \square i \square \square \square \square f \square c1 \square, f \square c2 \square, \square, f \square cq \square \square T$
and \Box h $nh\Box$ Xt \Box \Box . $k\Box$ 1 $i\Box$ 1 \Box The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010). Proof of theorem 2.1 Using the results of Parzen(1962), we have 1 n \Box ti \Box to
\square p means convergence in probability. Thus, where
$egin{array}{cccccccccccccccccccccccccccccccccccc$
According to lemma 4.1, we have $L_{\square}\square\square\square g\square t^{1}\square b\square X$ to $\square TS\square\square\square W_{n}^{*}\square^{T}\square\square o_{p}\square 1$ $L^{n}\square\square\square\square W^{n^{*}}\square^{T}\square$ converges in probability to the convex function Since the convex function $1 g\square to \square b\square X$ to $\square T$
$\overline{2}$ $\overline{\square} \overline{X}_t \overline{\square}$ 0 , according to the convexity lemma in Pollard(1991), for any compact set, the quadratic $L^{\square} \overline{\square} \overline{\square} \overline{\square}$

approximation to	holds uniformly for	. Thus, we have
$ ^{\cap} \Box \Box g \Box to \Box b \Box z $ $ \Box n $	X to \square $S\square$ 1 W n* \square 0 p \square 1 \square	
$\overline{\square \square X_t \square}$		
with $w_1k \Box \neg \Box n \Box i, kl$ $nh i \Box 1$, and	$Kh \square ti \square to \square, k \square 1, 2, \square, q$ $h k \square 1 i \square 1 h$ $h : \square theorem and the Cran$	and $Wn \square \square w$ 11, w 12, $\square w$ 1 q , w 1 $\square q$ \square 1 $\square \square T$
Notice that $Cov(\square_{i,k})$	$\Box,\Box i,k')$ $\Box\Box kk'$ and $Cov(\Box_i)$	$_{i,k},\Box j,k'$) \Box o If i \Box j . We have
n 2 □Kh (ti □to)	$(ti \square to) j$ $j \square P \ g(t_0)v_j. \ nh \ i \square 1$	h
	$W \square N(0,g(t)\square)$ In the result (4.1), we have n	$^{L\mathrm{o}}$. Moreover, we have
1		
$Var(w1k \sqcup w1k) \sqcup nh i \square 1$	$\square Kh (ti \square to) Var(\square i,k \square)$	$\sqcup i,k$)
$ \begin{array}{ccc} 1 & n & 2 \\ \square & \square K_h(t_i \square t_0)[F(c_i)] \end{array} $ And	$\mid di,k \mid b(Xti)$ $\mid k \mid \Box \cap F(c_k) \mid \Box \mid \Box_p(1) \ nh \ i$	$\Box 1 \qquad \Box (Xti)$
n q * 1 2 $Var(w1(q\Box 1)\Box w1$	$t\underline{i} \square t \underline{o}^*$ $(q\square 1)) \square \square Kh (ti \square to)$	$Var(\Box\Box i,k\ \Box\Box i,k\)$
\overline{nh} $i\Box_1$ h	$k\Box$ 1	
q_2 n 2 \square $K_h(t_i\square t_0)$ $-$	$t^{\underline{i}}\Box t \circ di,k b(Xti)$ $\max_k [F(c_k \Box) \Box F(c_k)] \Box$	\square_p (1). $nh \ i\square 1h$ $\square(Xti)$
$Var(w^{n^*} \square w^n) \square \square$		
	sing Slutsky's theorem yield	$\mathrm{ds}w_n\Box_L N(\mathrm{o},g(t_\mathrm{o})\Box).$
Copyright: © 2023 Con	tinental Publication	

Thus	voi. 11 110. 1 1111p. 1 actor. 0.000
Thus, $\Box \Box (Xto) \Box 1 * \Box 2 (Xt) \Box 1 \Box 1$ $\Box_n \Box S E(W_n) \Box_L N(o, \underline{\qquad}_2 \cup S \Box S) g(t_0) b(X_t) g(t_0) b(X_t)$	
0 O	
So the asymptotic bias of \Box ^(tO) is: $bias(\Box^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	
$Ki \square Kh(ti \square to), eq \square 1 \square (1,1,\square, 1)T \text{ and } W_1*n \square (w_11*,w_12*,w_1*q_1)$	T .
q c \square o z $\square k$, and Note that ti is symmetric, thus ${}^{k\square 1}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Xt) $\square\square\square(Xt)$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
Therefore,	
$ \begin{array}{cccc} 1 & \Box(Xto) & n & rbi(Xti) \\ bias(\Box^{}(to)) & \Box & \Box K_i & (1\Box o_P(1)). \\ nh & g(to)b(Xto) & i\Box 1 \Box (Xti) \\ ^n & rb(X)g(t)\Box^{"}(t)b(X) \end{array} $ Since	
$ \Box K_i i t^i \Box \circ \circ t \circ \Box_2 h^2 (1 \Box o_P(1)). \text{ We have} \\ nh \ i \Box 1 \ \Box (X \ ti) \qquad 2 \Box (X \ t \circ) $	
$\frac{}{\frac{1}{2}}$	
$\stackrel{\mathcal{L}}{bias}(\Box^{}(t_0))\Box\Box^{\text{\tiny{"}}}(t_0)\Box_2h^2\Box o_P(h^2).$ and $\Box^2(X)$	

Journal of Statistical and Mathematical Sciences

Vol. 11 No. 1 | Imp. Factor: 6.806

 $Var[\Box^{\hat{}}(to)] \Box 1 2 to 12 eqT \Box 1(S\Box 1\Box S\Box 1)11eq \Box 1 \Box op(1) nh g(t_0)b(X_{to}) q nh$

 $\overline{\Box} 1 \underline{\qquad}_{0} v_{0} \Box 2 (X t) R(q) \Box o_{p}(1). \qquad nh g(t_{0})b (X t_{0}) nh$

This completes the proof.

References

- Black, F., Derman, E. and Toy, W.(1990). *A one-factor model of interest rate and its application to treasury bond options*. Finan. Analysts' J., **46:**33-39.
- Black, F. and Scholes, M. (1973). *The pricing of options and corporate liabilities*. J. Polit. Economy, **81:**637-654.
- Fan, J. and Gijbels, I.(1996). Local polynomial modelling and its applications. Chapman and Hall, London.
- Fan, J., Jiang, J., Zhang, C. and Zhou, Z.(2003). *Time-dependent diffusion models for term structure dynamics and the stock price volatility*. Statistica Sinica, **13:**965-992.
- Kai,B.,Li,R. and Zou, H.(2010). *Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression*. J.R. Statist. Soc. B,**72:**49-69.
- Parzen, E.(1962). On estimation of a probability density function and model. Ann. Math. Statist., **33:**1065-1076.
- Pollard, D.(1991). A symptotics for least absolute deviation regression estimations}. Econometr. Theory, 7:186-199.
- Stanton,R.(1997).*A nonparametric model of term structure dynamics and the market price of interest rate risk*. J. Finance, **52**:19732002.
- Vasicek,O.A.(1977). An equilibrium characterization of the term structure. J. Finan. Econom., 5:177-188.
- Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Ann. Statist., **36:**1108-1126. T.A. Louis, Finding observed information using the EMl gorithm, J. Royal Stat. Soc, 1982, B44: 226-233.