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1 Introduction  
Linear regression is one of the most 
commonly used models for analyzing the 
effect of explanatory variables on a response 
variable. It has widespread application in 
various field of study, including social 
science, the environment, and biomedical 
research. The ordinary least squares (OLS) 
method has been generally used for 
regression analysis. However, OLS 
estimation of parameters is easily affected by 
the presence of outliers in the data. Outliers 
are observations that are far away from the 
main pattern of the data, while influential 
points and leverage points refer to the impact 
of removal of a point on the regression 
coefficients, in some sense the significance of 
exclusion of the given point. Outliers could 
be outlying in Y-space, X-space, or both. 
Usually, outliers outlying in X-space are also 
referred to as leverage points, such points do 
not always show up in the usual least square 
residual plots but may have significant 
influence on the regression coefficients. To 
remedy this problem, many robust 
regression methods have been developed 
that are not easily affected by the outliers 
including M estimation, MM estimation, 
LTS, S estimation, and a newly developed 
TELBS robust estimation. We give an 

overview of these methods in Section 2. In cases the data contains outliers, least squares method can 
be used to estimate the parameters after the outliers are identified and removed. Another way is using 
a robust regression approach other than OLS to estimate the model parameters without discarding any 
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outliers. The robust regression methods provide a means to estimate model parameters that either 
diminishes or excludes the influence of outliers, which otherwise could have a significant impact on 
parameter values when using OLS method. In certain cases the outliers may represent a departure from 
the larger pattern that still has significance, while in other cases they may represent bad or invalid 
observations to be discarded. Two of the primary concerns we address in evaluating robust estimators 
are breakdown point and asymptotic efficiency, and these relate to a trade-off between robustness and 
variability in the data that is diminished when unusual observations are excluded or reweighted to be 
of less influence. These issues are discussed further below. Although application of robust regression 
would apply to analysis of data in a wide range of fields, from sociology and political science to 
chemistry and biology and beyond as described in Andrew, et al [2], while application of these methods 
has not yet fully caught on in all these fields.   
Concepts of robustness have developed considerably in recent decades, such as addressed in Stigler 
[28], along with significant development in robust statistical tools and techniques, with the promise of 
ongoing development and new directions in development and application. Nevertheless we observe 
some studies where robust regression plays a central role, such as Kocak et al. [15], where linear 
regression is applied to estimate tissue resection weights in patients undergoing reduction 
mammaplasty. Mircean et al. [19] used Huber’s M estimation to obtain an estimate of the ratio between 
expressions of specific proteins from two samples. We comment further below regarding examples of 
use of robust regression as an essential tool in bioinformatics, such as in the article of Xu et al. [34] 
analyzing the association between DNA copy number and gene expression through use of robust 
regression. An important aspect of robust regression includes identification of outliers and other 
leverage point. Distance measures, such as studentized residuals, Cook’s distance, and the leverage 
statistic, h, also closely related to Mahalanobis distance, are often utilized for a quantitative assessment 
of which data points may be outliers or leverage points, Cook and Weisberg [6] and Rousseeuw and 
Hubert [25], and the need for such analytic methods to identify outliers or leverage points increases 
with large data sets and with high dimensional data, both of which are prevalent in many current 
applications. It is worthwhile to notice that in certain applications the outliers may be points of 
significant interest, such as addressed in Barghash, et al. [3], such as in data points in a data set of gene 
expression levels in cancer, which could represent a different subtype of the disease being studied. The 
distances in Barghash, et al. [3] are also applied to separate the extreme outliers interesting outliers 
that might be relevant for biological analysis. The article of Aguinis, et al. [1] also discusses the issues 
associated with robustness and identification of outliers, with attention to discussion associated to 
distinguishing error outliers, interesting outliers, and influential outliers, and how these may be 
handled differently.    
This article builds on the article of Tabatabai, et al. [30] which introduced the new TELBS robust linear 
estimator, which displays both a high breakdown point and good asymptotic efficiency. This paper finds 
additional examples in biology and medicine in which robust methods, and particularly the TELBS 
method, can be applied to data sets from published works to improve the analysis over the non-robust 
OLS approach. Furthermore the computer simulations comparing TELBS to other methods made in 
Tabatabai, et al. [30] is extended to include comparison with Least Trimmed Squares (LTS) and S 
Estimation. Section 2 presents several important approaches to robust linear regression, culminating 
in the TELBS method. The following sections contain the extension of the work of [30] in comparing 
the performance of the TELBS method with these other methods. In Section 3, two real data sets from 
the medical field are analyzed using TELBS robust regression in comparison with other robust 
regression methods of S, LTS, M, and MM, and also compared to OLS and OLS with outliers removed. 
The computer simulation study to further investigate these methods in comparison with other robust 
methods is presented in Section 4. Finally, we give a summary and discussion in Section 5.   
2. Robust Linear Regression Methods  
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 We consider the standard multiple linear regression model given in the form of  
 𝑦=𝑋𝛽+𝜀  
where y is n by 1 response vector, 𝑋=(𝑥𝑖𝑗) is n by p design matrix of predictor variables,  is p by 1 vector 
of parameters,  is n by 1 vector of random errors. The OLS estimate of parameter vector  is found by 
minimizing the sum of squared errors. For OLS the standard assumption is that residuals are 
independent and have identical normal distributions. Any departure from this strict assumption in the 
residuals can lead to difficulty in OLS estimation, such as addressed in Horn, et al. [12], MacKinnon 
[17], and Liu [16], and certain departures are commonly dealt with, such as heteroscedascity, presence 
of outliers, or combinations of multiple sources of error. Least squares necessarily penalizes outliers 
more based on the square of a large distance from the pattern, and the alternative of least absolute 
deviation (LAD) penalizes outliers less and provide some level of robustness to outliers. While OLS and 
LAD correspond to 𝐿2 and 𝐿1 norms for the residuals, other variations on relative weighting of residuals 
allows formation of other robust loss functions. Generalization to the concept of minimization of the 
robust loss function 𝜌(𝑥), often accomplished through use of the influence function 𝜓=𝜌′(𝑥), provides 
the first robust method, M estimation, discussed further below.   
In evaluating robust estimators, we primarily discuss two aspects of their performance, breakdown 
point and efficiency, described in Donoho and Huber [8]. Breakdown point relates to how much of the 
data can be corrupted before the robust estimator loses its effectiveness, i.e. the proportion of incorrect 
observations before the estimator gives incorrect estimates. Efficiency relates to the variance of the 
estimates with Absolute Relative Efficiency defined as 𝑉𝑎𝑟2/𝑉𝑎𝑟1, and conceptually this measures how 
well the robust estimator compares with OLS for clean data, without outliers or leverage points.   
In general, if larger residuals or outliers are reduced in significance or eliminated, this will diminish the 
variability and lower efficiency. Conceptually breakdown point be seen as having a limiting value of 0.5, 
as beyond this point it may not be possible to distinguish between underlying distribution and 
contamination, Rousseeuw and Leroy [23]. See the article Davies and Gather [7] for a more detailed 
discussion related to the limit of breakdown point, robust methods that achieve this limit, and 
associated assumptions. This article also includes development of associated ideas and concepts 
underlying the proofs of these results. We also mention the limitation of 0.5 for breakdown point is 
under the assumption that the robust estimator should have a unique solution. In relation to the 
applications to machine learning and computer vision, it is worthwhile to mention the alternative 
robust methods developed within this community to analyze data that has levels of contamination 
significantly higher than 50%. It is possible to reach level above 0.5 if do not require a unique solution. 
These methods are effective but computationally intensive and each has its own defect/weakness, such 
as discussed in Wang, et al. [32]. Breakdown point is one critical aspect of robust estimation, and 
various approaches have been developed to approach the 0.5 limiting value for the breakdown point. 
However, other important aspects of robustness should be considered, including efficiency, and Huber 
and Ronchetti [11] address issues of stability within robust estimation and the importance of efficiency, 
rather than solely focusing on breakdown point. We also mention that breakdown point is one of many 
considerations in applying robust methods, and it is of value to consider the comments of Cook, et al. 
[5] and Fox and Weisberg [9], relating to avoidance of very high breakdown estimates, that very high 
breakdown estimates do not allow for diagnosis of model specification and require some level of 
certainty the data fit the underlying distribution.   
Early robust estimators were higher efficiency and lower breakdown point, while new methods worked 
toward approaching 0.5 breakdown. After this stage,the goals shifted to moving toward increasing 
efficiency with a higher breakdown point. The earlier robust estimators to reach a high breakdown point 
had low efficiency. Selection or development of robust estimators seemed to offer trade-off between 
asymptotic efficiency and high breakdown point. For instance in the redescending influence functions 
discussed below, altering the tuning constant can increase rejection point and decrease efficiency. The 
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work of Staudte and Sheather [29] addresses this trade-off and the importance of consideration of 
asymptotic efficiency together with breakdown point when performing robust estimation and selection 
of a balance appropriate to the context. In general the variation of the tuning constant varies the down-
weighting of outliers, thus affecting the breakdown point and efficiency. Increasing the tuning constant 
tends to increase the breakdown point and decrease efficiency. However, modern methods have been 
developed that provide estimators with both a relative high breakdown point and high asymptotic 
efficiency, such as the MM and TELBS estimators described below. We also mention that sample size 
is an important consideration in relation to robust statistics, and the standard difficulties for linear 
regression with a small sample size, such as addressed in Chapelle, et al. [4], can be further 
compounded if there are outliers, contamination of data, or departure from distribution. and issues of 
small samples for robust estimation are well known, such as addressed in Imbens and Kolesar [13]. The 
problem of robust estimation with small sample size is also an important problem, and for these reasons 
the simulation section includes a relative small sample size, to demonstrate the value of the TELBS 
estimators in comparison to other estimators for both smaller and larger samples. 
2.1 M Estimation   
The concept of M estimation as weighted loss function with reweighted loss function , as an extension 
of the concept of 𝐿1 versus 𝐿2 corresponding to different weight functions. This principle can be 
extended to more robust loss functions. Huber (1973) [10] introduced the M-estimate that minimize a 
function  of the errors. The objective function is given as   

  

 where 𝜎  is an estimate of scale. A reasonable  function should have several basic properties: non-
negativity, zero penalty for residual of 0, symmetric, and monotonically increasing for residuals of 
increasing distance. These properties are given as the following:      

, 𝜌(0)=0, 𝜌(𝑟)=𝜌(−𝑟), and 𝜌(𝑟𝑖)≥𝜌(𝑟′𝑖) for  𝑟𝑖 > 𝑟′𝑖 . In addition we may often require  
the loss function to have a bounded influence function , where  is the derivative of . In general, 

influence function may be grouped in three categories: monotone, hard redescending, and soft 
redescending, with the Tukey bisquare function as an example of a hard redescender. The M estimate 
of the parameter can be obtained by taking partial derivatives with respect to  and setting them equal 

to 0.  The system of normal equations are given by   
  

  

 where  is the derivative of , which will often be a bounded or redescending function. Note that the 
case of redescending influence function correspond to diminishing weights for increasing large 
residuals; this leads to the concept of rejection point based on shape of redescending function and the 
value of the tuning constant. This tuning constant affects where rejection point occurs, as well as 
affecting the balance between breakdown point and asymptotic efficiency for the estimator. Good 
examples to mention are the Haber and the Tukey bisquare influence functions, which are bounded and 
hard redescending, respectively. In these cases the tuning constant is the transition between levels of 
the influence and loss functions that determine where the influence function reaches its plateau or 
redescends to zero, respectively. Iteratively reweighted least square (IRLS) is one of the commonly used 
method to solve the nonlinear equations. In general, M estimate is fairly robust to the outliers in y-
direction, however, it is not robust to leverage points (outliers in x-direction).   
2.2 LTS Estimation   
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The Least Trimmed Squares (LTS) estimate was proposed by Rousseeuw (1984) [22] coupled with the 
Least Median of Squares (LMS) method, both of which were designed to achieve a high breakdown 
point. We note that the LTS method works by trimming a fixed percentage of the larger residuals. It 
thus has an inherent limitation of discarding a certain percentage of good data, or potentially missing 
a certain percentage of outliers, unless the number of outliers is known a priori. In effect, this usually 
leads to a reduced efficiency from reduced variance due to the discarded observations. Let 𝑟𝑖 =𝑦𝑖 −𝑥′𝑖𝛽 
,𝑖=1,…,𝑛, the LTS estimate of parameter is given as   

 (2𝑖)  

 where 𝑟12 ≤𝑟22 ≤⋯≤𝑟𝑛2 are the ordered squared residuals. Usually, h is defined in the range 𝑛/2+1≤ 
ℎ≤(3𝑛+𝑝+1)/4, with n and p being sample size and number of parameters, respectively. We note that 
both the breakdown point and efficiency vary with h, as this adjusts the number of observations 
discarded. The trimming of the larger residuals makes LTS resistant to a significant number of outliers, 
and this method is analogous to a trimmed mean representing aspects of both the mean and median. 
LTS is considered as a high breakdown method with a breakdown point of 50 , i.e. to be resistent for 
a contamination of 50  of the data. The LTS has low asymptotic efficiency, as may be expected, since 
the loss of information in the trimming of a significant number of the data points will lead to a loss of 
variability and a lower efficiency.   
We mention that LTS was one of the early methods to approach 0.5 breakdown point, its low efficiency 
is a limitation. While LTS has value as an early example of a robust estimator with high breakdown 
point, reaching practically 0.5 when h=n/2, its efficiency is low, approximately 7% when h=n/2 for the 
normal distribution. However, in practice LTS will sometimes be used as an initial estimate for other 
methods requiring a high breakdown point. The observation that the LTS estimator minimizes one form 
of a residual scale estimate leads directly to the S estimator, but consideration of minimization of a 
more efficient estimator of scale.   
2.3 S Estimation 
Because the adaptive weights of M estimates, associated to , are not invariant with respect to spread of 
the data, the concept of scale invariance leads to a new approach to estimation in S estimation. Here 
the underlying idea is to use M estimates in estimating the value of scale, S, and thus normalizing the 
role of scale in the relative down-weighting of outliers. This procedure of minimizing the scale estimate 
in the data also corresponds to minimization of the variance among the residuals. This S estimate was 
proposed by Rousseeuw and Yohai (1984) [26] and defined as  
  𝛽 =arg𝑚𝑖𝑛𝑆(𝑟1(𝛽),…,𝑟𝑛(𝛽)) 
  where 𝑟𝑖(𝛽) is the 𝑖𝑡ℎ residual, the dispersion 𝑆(𝛽) is the solution of   

  

 where 𝐾= 𝜌(𝑠)𝑑Φ(𝑠) such that 𝛽  and 𝑆(𝛽 ) are asymptotically consistent estimate of  and  for the 

Gaussian regression model. This can be interpreted as expectation of loss function under a Gaussian 
distribution. Rousseeuw and Yohai [26] suggested a loss function as,  

 
, otherwise, .   

The turning constant c controls the breakdown value and the efficiency of the S estimate. When c=1.548 
and K=0.11995, the breakdown value of the S estimate is 50  and the asymptotic efficiency is about 
29%. S estimation is usually considered as high breakdown and low efficiency method. The breakdown 
point and efficiency for S estimates vary with the tuning constant, and while this estimate can reach 
high breakdown point at relatively low efficiency, its breakdown point is fairly low at high efficiency, 
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such as 10% breakdown point for 96.6% efficiency. This further illustrates the general principle of 
tradeoff between breakdown point and efficiency; however this is overcome in the next two estimators. 
Although the asymptotic efficiency for S estimates is somewhat improved over LTS, it is still considered 
as low efficiency. However, S estimates are often used in the initial step of the more refined robust 
estimators described below. 
 
2.4 MM Estimation 
MM estimation was introduced by Yohai (1987) [35]. It was the first estimate with a high breakdown 
(50%) and high efficiency under normal distribution assumption. MM estimation is based on a 
procedure by which an initial estimate with high breakdown point but low asymptotic efficiency can be 
restimated in an iterative procedure that increases efficiency while maintaining the initial breakdown 
point, Rousseeuw and Leroy [23]. This approach is based on holding fixed the scale from the initial 
estimate and applying another M estimate to the residuals. MM estimator includes three steps:   
Step 1. Compute an initial consistent estimate  with a high breakdown point but possibly low 
efficiency (LTS estimate and S estimate are two kinds of estimates that can be used as the initial 
estimate). The commonly adopted loss function for S-estimate is given as  

  

Step 2. Calculate the MM estimate of the parameters  that minimize the expression   
  

  

 where 𝜎 0 is the estimate of scale (standard deviation of the residuals) from first step.    
Step 3. The final step computes the MM estimate of scale s which is the solution to the equation   
  

 

In Rousseeuw and Leroy [23] it is proven that the MM estimators inherit the high breakdown point 
from their initial estimate. However, since the breakdown point is based on the tuning constant in the 
initial two steps and the efficiency is based on a separate tuning constant in the final step, these can be 
made of be independent. Thus the MM estimate is the first case of high breakdown and high efficiency 
robust methods, and this is generally recognized as being very effective in dealing with multiple outliers 
and multiple leverage points. MM method yields an estimate with both high breakdown point and high 
asymptotic efficiency. This method is one of first successes in overcoming a trade-off between 
breakdown point and efficiency.    
We mention briefly the tao robust method as being an alternative means of simultaneously achieving 
high breakdown point and high asymptotic efficiency, such as the tao robust methods in Yohai and 
Zamar [36] and Tabatabai and Argyros [31] and their applications in pattern recognition in Pern𝑖 a-
Espinoza, et al. [21] and Rusiecki [27]. This alternative method has the advantage of not requiring an 
initial estimate of scale.   
2.5 TELBS Robust Linear Regression Method  
The TELBS estimator is in a similar category to the MM estimation, with iterative steps from an initial 
estimate with high breakdown point, but this newer estimator also includes a variant approach to the 
influence function applying hyperbolic functions and other novel features. Tabatabai et al. [30] 
proposed this new robust linear regression method, TELBS method in 2012 and demonstrated its 

https://doi.org/10.5281/zenodo.14513320


Journal of Statistical and Mathematical Sciences 
Vol. 12 No. 3 | Imp. Factor: 7.826 

                                                                                                                                        DOI: https://doi.org/10.5281/zenodo.14513489 

Copyright: © 2024 Continental Publication 

20 

effective performance in comparison with other robust estimators, including MM. The TELBS estimate 
of parameter  is given by  

  (1) 

 where   
  𝜌𝜔(𝑥)=1−𝑆𝑒𝑐ℎ(𝜔𝑥)  
and , a positive real number, is called the turning constant, and its role in horizontal 
dilation/contraction of 𝜌𝜔 plays a role analogous to the tuning constants discussed above. The function 
𝑆𝑒𝑐ℎ(⋅) is the hyperbolic secant function and 𝑡𝑖 is defined by 

  (2) 

where  is the error standard deviation, and ℎ𝑖𝑖 is the diagonal element of the hat matrix of the form   
 𝐻=𝑋(𝑋′𝑋)−1𝑋′,  
 where X is the design matrix. Define 𝑀𝑗 =𝑀𝑒𝑑𝑖𝑎𝑛{|𝑥1𝑗|,|𝑥2𝑗|,…,|𝑥𝑛𝑗|} for 𝑗=1,...,𝑝 . Define  

. Usually,  is unknown and it is suggested to use the estimator proposed by 

Rousseeuw and Croux [24], which is given by   
 𝜎 =1.1926𝑀𝑒𝑑𝑖𝑎𝑛(𝑀𝑒𝑑𝑖𝑎𝑛|𝑟𝑖 −𝑟𝑗|),1≤𝑖,𝑗≤𝑛, (3) 
where 𝑟𝑗 is the 𝑗𝑡ℎ residual. Taking the partial derivatives of equation (1) with respect to the parameters 
and  
setting them equal to zero results in the following system of equations: 

  (4)  

 where 𝜓𝜔 =𝜔𝑆𝑒𝑐ℎ(𝜔𝑥)𝑇𝑎𝑛ℎ(𝜔𝑥), which is the derivative of 𝜌𝜔. We mention this influence function is a 
case of a soft redescending influence function with tuning constant . The tuning constant  plays a 
role comparable to tuning constant c in the Tukey bisquare function given above. The weight 𝑤𝑖 is 
defined as    

  (5)   

Then the equation (4) can be written as    𝑛 
 𝑤𝑖(𝑦𝑖 −𝑥′𝑖𝛽 )𝑥𝑖 =0  
  𝑖=1 
Denote the weight matrix by , it is a diagonal matrix. The elements on the main diagonal are 
𝑤1,𝑤2,…,𝑤𝑛. Therefore, the estimate of the parameter  is given by   

 𝛽 =(𝑋′𝑊𝑋)−1𝑋′𝑊   (6)   

The following procedures are used to estimate the parameter.  
Step 1. Set 𝜎 0 =1, calculate an initial estimate of vector  by minimizing the function given in (1).    
Step 2. Calculate 𝜎  and weights 𝑤𝑖 by using equation (3) and (5), then obtain the weight matrix .   
Step 3. Calculate  using equation (6).   
Repeat steps 2 to 3 until convergence occurs.    
For further details, see [30]. TELBS estimates of linear regression parameters have influence functions 
bounded in both the explanatory and the response variable direction. It has high breakdown point and 
high asymptotic efficiency. The tuning constant 𝜔=0.405,0.525,0.628,0.721 correspond to 
95%,90%,85%,80% efficiency, respectively.  
In all examples and simulations considered in this study, TELBS method is evaluated under an 
asymptotic efficiency of  
85 .  
We note that TELBS is an important new robust estimator with high breakdown and high asymptotic 
efficiency, similar to the MM estimator. Comparisons with MM estimates and other robust estimates 
are made in the material in Tabatabai, et al. [30] and in the following sections containing applications 
of robust estimators to practical data from biology and computer simulations. These comparisons all 
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suggest that TELBS performs on a level comparable to MM estimates, and with numerous examples 
where TELBS demonstrates a higher level of robustness.  
3 Applications   
To further study the performance of TELBS and compare it with other robust methods, OLS, S, LTS, 
M, MM, and TELBS were applied to two data sets. Tabatabai, et al. [30] proposed a new diagnostic 
measure for robust regression called 𝑆ℎ. We examine outliers by using three diagnostic measures: 
Cook’s distance (CD), robust Studentized residual (SR), and 𝑆ℎ. A brief introduction of these measures 
is given below.  
Cook’s distance has been widely used for identifying outliers. Tabatabai et al. [30] suggested a robust 
Cook’s distance using TELBS estimates of parameters, which is given by      

where p is the number of parameters, 𝑡𝑖 is given by equation (2) and ℎ𝑖𝑖 is the diagonal element of the 
hat matrix.  
The Studentized residual using TELBS estimates of parameters has the form  

  

where 𝜎  is defined by equation (3).   
In addition to considering the elements of the main diagonal of the hat matrix ℎ𝑖𝑖, Tabatabai, et al. [30] 
also recommended a new influential measure which is defined as      

where . Large value of |𝑆ℎ(𝑖)| indicates the presence of an 

influential observation. This measure seems to be very good for identifying the leverage points based 
on the results in [30] and this study.  
One example we studied is a brain and weight data that was taken from a larger data set in Weisberg 
[33] and Jerison [14]. It gives the brain weight and body weight of 65 animals. We used a logarithmic 
transformation (common log) for both variables, and a scatter diagram of the transformed data is given 
in Figure 1 (left). We can see there are 3 outlying points. Table 1 gives the values of the three measures 
for some of the observations using TELBS as a robust estimator of regression parameters. Observations 
63, 64, 65 have large values for each measure and are identified as outliers. To investigate whether a 
larger brain is required to govern a heavier body, a linear regression model is used to fit the data with 
brain weight (y) and body weight (x). Each method was fitted to the data and the fitted lines for OLS 
and TELBS are given in Figure 1 (right). The OLS fit is pulled toward the outlying points and have the 
lowest slope. 
We computed the parameter estimates, standard error and p-value using MASS package in R 2.12. 
However, the standard error and p-value are not available for S and LTS estimates. The result for each 
method is given in Table 2. Among five robust regression methods, MM and TELBS provide the closest 
estimates to OLS when the three outliers were removed. The small p-values indicate that body weight 
has a significant effect on brain weight, the higher the body weight, the larger the brain weight.  
This example presents a clear linear relation in the log body weight versus log brain weight data, with 
three clear outliers that were also identified by each of the TELBS diagnostic measures: CD, SR, and 
Sh. Here the MM and TELBS methods are both very close to OLS with these outliers removed for both 
parameters, whereas each of S, LTS, and M had a larger distance for at least one of the parameters. This 
case is a good example where the MM and TELBS estimates provide a good representation of the linear 
relationship between log body weight and log brain weight, and the three removed outliers are a 
deviation from this pattern which significantly disrupt the OLS estimate, and to a lesser extend  
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(red line), and OLS fit with removal of 3 outliers (dashed line).   
Table 1: Summary of diagnostic measures for brain weight data 

 
Observation   

 CD    SR   𝑆ℎ  

1   0.0069    3.6013    -0.8091   
2   0.0249    5.5704    0.1022   
3   0.0011    -1.3180    -0.5288   
4   0.0163    -3.3414    2.1828   

        
62   0.0061    3.3907    -0.8374   
63   2.2524    -24.5325    8.2490  
64   1.7425    -22.2431    7.7345   
65   4.2448    -25.6678    13.6624   

Table 2: Summary of estimates for brain weight data for six comparison models  
   Parameter    Estimate    Standard 

errors  
 P-value   

OLS    Constant   0.9432    0.0704   <0.0001  
 Log (Body 
weight)   

 0.5915    0.0412   <0.0001  

OLS   
(removal of 
3 outliers)  

 Constant   0.9271    0.0799   <0.0001  
 Log (body 
weight)   

 0.7517    0.0464   <0.0001  

S    Constant    0.8650   -    -  
 Log (Body 
weight)   

 0.7470   -    -   

LTS    Constant    0.8475   -    -  
 Log (Body 
weight)   

 0.7713   -   -   

M    Constant    0.9242    0.0462   <0.0001  

those of M, LTS, and S.    
  

  
  
Figure 1: Left: Scatter diagram for b rain weight data. Right: Scatter diagram with OLS (black line), TELBS fit  
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 Log (Body 
weight)   

 0.6985    0.0270   <0.0001  

MM    Constant    0.9196    0.0426   <0.0001  
 Log (Body 
weight)   

 0.7460    0.0249   <0.0001  

TELBS    Constant    0.9289    0.0435   <0.0001  
 Log (Body 
weight)   

 0.7499    0.0255   <0.0001  

Another example we considered is an interstitial lung disease (ILD) data which was used in Marubini 
et al. [18] and Narula et al. [20]. The data was collected to investigate the association between objective 
indicators of lung damage and severity of functional impairment in patients affected by ILD. Interstitial 
lung disease is a general category that includes many different lung conditions. All interstitial lung 
disease affect the interstitium, a part of the lung’s anatomic structure. The response variable is forced 
vital capacity (FVC), that is the amount of air which can be forcibly exhaled from the lungs after taking 
the deepest breath possible. FVC is used to help determine both the presence and severity of lung 
diseases. The four factors studied in [20] that have impact on the FVC are age (in years), epithelial cells 
(EPIT: area fraction of epithelial cells/10000 𝑝𝑚2 of alveolar tissue), cellular infiltration (CELL: total 
cellularity/10000 𝑝𝑚2 of alveolar tissue), and Honeycombing (HONEY, score of honeycombing, zero to 
four).  
In Marubini [18] and Narula [20], several outliers in the data were identified and two robust regression 
methods (C-M regression and the minimum sum of absolute errors regression) were applied to the data. 
We computed the values of the three diagnostic measures for each observation using TELBS estimators, 
the result for some observations is given in Table 3. The data set contains four outliers, observation 11 
and 15 are outlying in the y-direction, observation 3 and 23 are leverage points that are outlying in the 
x-direction. 11 and 15 have the largest values in SR and relative large values in CD, while 3 and 23 have 
the largest values in 𝑆ℎ and CD.   
Table 3: Summary of diagnostic measures for lung disease data 

 Observation    CD    SR   𝑆ℎ  

1   0.0004    0.0050    1.3729   

2   0.0015    -0.0187    -0.6384   

3   1.2315    -0.0505    7.6090   

        

11   0.1700    -0.2369    -1.0388   

        

15   0.3389    0.1757    0.7696   

        

23   0.6848    -0.0484    6.8676  

24   0.0010    0.0139    -0.3993   
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A multiple linear regression model is used to fit the data. For all the robust methods, the original data 
was used and the estimates of parameters, standard error and p-value for each method are given in 
Table 4. For OLS, results with and without outliers are also included in Table 4. R-square increased 
from 0.71 to 0.79 after the outliers were removed from the data which indicates a better fit to the data. 
The results indicate that the LTS estimate is clearly not suitable in this case as many of the parameter 
estimates are far from the values of both the estimates for OLS and OLS with outliers removed. In 
particular the parameter estimates for Constant and CELL are a different order of magnitude, far from 
those based on OLS. The parameters for HONEY and EPIT also display a significant difference 
compared to those for both OLS and OLS with outliers removed, and furthermore the estimates for the 
EPIT moves in the opposite (wrong) direction when applying LTS. Clearly in trimming of the data from 
LTS some important information in the data was lost along with the removal of the outliers. In fact, for 
this data set the S estimate displays some similar defects, though to a smaller extent. While the 
significant change in the parameter for Constant may be a concern, as it is no longer nearby the values 
for OLS and OLS with outliers removed, the significant change in the EPIT parameter in the opposite 
direction is a larger concern for this S estimate. 
Table 4: Summary of estimates for lung disease data for six comparison models 

   Parameter    Estimate    Standard 
errors  

 P-value   

OLS   
  
(𝑅2= 0.71)   

 Constant    46.6539    11.2767    0.0006   
 Age    0.6138    0.2364    0.0177   
 EPIT    -0.0615    0.0174    0.0023   
 CELL    107.7328    37.9187    0.0104   
 HONEY   -10.6388    1.9359   <0.0001  

OLS   
(removal of   
4 outliers)   
(𝑅2= 0.79)   

 Constant   52.7470    12.7672    0.0009   
 Age    0.4540    0.1960    0.0351   
 EPIT    -0.0590    0.0195    0.0086   
 CELL   113.1916    53.9400    0.0532   
 HONEY    -10.3710    1.5916   <0.0001  

S    Constant    58.93483   -    -  
 Age    0.40294   -    -   
 EPIT    -0.06749   -   -   
 CELL    108.56988   -   -   
 HONEY    -10.38646   -   -   

LTS    Constant    2.68466   -    -  
 Age    0.52163   -   -   
 EPIT    -0.09085   -   -   
 CELL    334.44987    -   -   
 HONEY    -8.50629    -   -   

M    Constant    51.6893    11.2182    0.0002   
 Age    0.4997    0.2351    0.0469   
 EPIT    -0.0625    0.0173    0.0019   
 CELL    112.4203    37.7221    0.0077   
 HONEY    -10.6973    1.9259   <0.0001  

MM    Constant    50.4173    10.7485    0.0002   
 Age    0.5610    0.2253    0.0222   
 EPIT    -0.0638    0.0166    0.0011   
 CELL    108.2342    36.1424    0.0074   
 HONEY    -10.8703    1.8452   <0.0001  
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TELBS    Constant    49.5598    8.2306   <0.0001  
 Age    0.4599    0.1725    0.0077  
 EPIT    -0.0431    0.0127    0.0007   
 CELL    108.4482   27.67582   <0.0001  
 HONEY    -10.1231    1.412981   <0.0001  

Among the remaining estimates M, MM, and TELBS, all of these appear to be reasonable estimates, 
with results close to OLS and OLS with the outliers removed, while the TELBS estimates appear to be 
the best among these. Both M and MM estimates are comparable, and in this case the M estimates are 
in fact closer to the OLS with the outliers removed. Similarly to the S estimates, both M and MM had a 
change in estimates in parameters for both EPIT and HONEY that changed in the opposite (wrong) 
direction, a cause for concern. However these are a smaller order of magnitude than the others 
mentioned above. The TELBS estimate is relatively close in the estimates for all of the parameters, with 
the change of each of them in the same (correct) direction. Although some of the TELBS parameter 
estimates are closer to the estimates for OLS than to the estimates for OLS with outliers removed, all of 
the parameter estimates have the lowest standard error among the methods considered.    
In this application to medical data of Marubini [18] and Narula [20] for interstitial lung disease, we see 
that the influence measures of CD, SR, and 𝑆ℎ associated to the TELBS robust estimator were useful in 
identifying outliers, as the stronger outliers in data points 3 and 23 displayed larger magnitudes of CD 
and 𝑆ℎ, while the outliers in data points 11 and 15 displayed larger magnitudes of SR. In application of 
robust estimators for the linear regression, TELBS performed favorably in comparison with the other 
methods considered, consistently with other examples considered in this article and in Tabatabai, et al. 
[30].   
4 A Simulation Study 
To further evaluate the performance of the TELBS estimates in comparison with M, MM, S, and LTS 
estimates, we conduct a simulation study under a small sample size (n=15), and a relative large sample 
size (n=30). We consider different contamination levels under various direction of contamination such 
as x-direction, y-direction, and both x- and y- directions. The simulation study is performed with R 2.12 
and based on 5000 simulations. We consider a linear regression models with two covariates (𝑥1 and 𝑥2) 
and generate both 𝑥1 and 𝑥2 and the random errors from a standard normal distribution with 
parameters 1, 3, and 3 for intercept and two covariates respectively. To evaluate the robustness of these 
estimates, we randomly chose 10%,20%,40% of the data and contaminated them by magnifying their 
size by a factor of 100, first in the direction of response variable (y), explanatory variables (both 𝑥1 and 
𝑥2), then both the response and explanatory variables (y, 𝑥1, and 𝑥2). The results of these simulations 
are reported in Tables 5, 6, 7, 8, 9, and 10. In each case the estimators are evaluated in terms of Bias 

and MSE (Mean Square Error). The bias was estimated by the equation , where m is 

the number of simulations. The mean square error was estimated by .   

Table 5 and 6 give the results of Bias and MSE for each method for sample size of 15 and 30 respectively 
when the contamination is in the x- direction. For contamination in the y- direction, the results are 
given in Table 7 and 8, for sample size of 15 and 30 respectively. By examining the simulation results, 
we see that M estimation underperforms in all cases. It fails to give a close estimate of the parameters 
when the contamination level increases to 20% or higher. LTS, S, and MM estimation perform well in 
most cases except for a higher level of contamination, where they provide a relative large bias and MSE. 
In specific, S and MM fail to give a good estimate for the y-direction with a contamination level of 40% 
when the sample size is small. For x- direction, LTS, S and MM have relative large bias and MSE for 
both sample sizes when the contamination is 40%. TELBS outperforms all other methods in all six cases 
considered, it provides similar or smaller bias and MSE compared with other methods under each case. 
In general the performance of the estimators shows some level of difference for contamination in the 
x- direction and contamination in the y- direction; however this is not true for the TELBS estimator, 
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which performs at a high level for all cases considered. In comparison with the other methods 
considered, this simulation has demonstrated the value of the TELBS robust estimator. Although there 
are a few cases where another estimator has numbers better than the TELBS estimator, TELBS has 
lowest value in majority of cases (rows in table), and in every case TELBS is nearby the lowest value. 
Furthermore TELBS performs most consistently throughout all cases considered, and there are many 
cases where it gives significantly better result than one or more of the others, especially in the cases of 
higher levels of contamination and contamination in the x-variable.   
The best comparison with TELBS is MM, which is close in many cases and slightly better in some cases. 
MM slightly better for low and intermediate level contamination in the y- direction, in Tables 7 and 8, 
though the values are fairly close to TELBS. However, as the contamination increases to a higher level 
(40%), MM loses this slight advantage relative to TELBS, and in fact the values for MM are extremely 
poor in the case of the small sample size (n=15), as seen in Table 7. Also note that in some cases LTS 
performs well compared to TELBS, particularly in the case of high level of contamination in the y-
direction for a small sample (n=15), where LTS had slightly lower values compared to TELBS, as seen 
in Table 7. However Table 8 shows that for a larger sample size, the MSE for estimation of these 
parameters is now smaller for TELBS.  
Furthermore TELBS performed significantly better than LTS in each of cases where the contamination 
is in the x- direction, and LTS had significantly worse scores than TELBS in cases of high levels of 
contamination in the x- direction, as seen in Tables 5 and 6. In cases of contamination in the x- and y- 
directions, in Tables 9 and 10, TELBS consistently show significantly lower MSE for the parameter 
estimates compared to LTS, while for high levels of contamination LTS was slightly better in regard to 
Bias of parameter estimates.    
In summary, the simulation extends the trend seen in Tabatabai, et al. [30] and in the Applications 
section, which both emphasizing the value of the TELBS robust estimator in comparison with other 
robust estimation methods, such as M, S, LTS, and MM. This simulation revealed that TELBS yields 
best result in majority of cases and is consistently nearby the best result. Each of other estimators has 
at least one case with bad values, while TELBS is consistently the best estimate or near the best estimate 
for all the cases considered.   
Table 5: Bias and MSE with contamination in the x-direction (n=15)   
  Parameter   LTS    S    M    MM    TELBS   

10%   
Bias   
  
MSE   

𝛽0   0.0063    0.0143    0.0433    0.0036    0.0133  

𝛽1   0.0308    0.0251    2.8605    0.0308    0.0293  

𝛽2   0.0453    0.0024    2.8787    0.0201   0.0041   

𝛽0   0.3578    0.2009    1.4704    0.1013   0.1104   

𝛽1   0.5463    0.3102    8.3910    0.1811   0.1208  

𝛽2   0.4892    0.3025    8.4568    0.1765   0.1248  
20%   
Bias   
  
MSE   

𝛽0   0.0013    0.0111    0.0615    0.0086    0.0004  

𝛽1   0.1122    0.0478    2.9603    0.0954    0.0243  

𝛽2   0.0333    0.0438    2.9595    0.0656    0.0004  

𝛽0   0.3453    0.2407    1.4053    0.1277    0.1123   

𝛽1   0.6102    0.4066    8.7679    0.3716    0.1471  

𝛽2   0.5491    0.3729    8.7689    0.3598    0.1578  
40%   
Bias   
  
MSE   

𝛽0   0.0184    0.0249    0.0116    0.0098    0.0074   

𝛽1   1.1986    2.0264    2.9694    0.5988    0.0945  

𝛽2   1.2098    2.0440    2.9698    0.4667    0.0846   

𝛽0   0.7477    0.8525    0.8245    0.4445    0.1517   

𝛽1   3.8151    6.1377    8.8176    1.9756    0.2917  

𝛽2   3.7654    6.1337    8.8202    1.6455    0.3258  
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Table 6: Bias and MSE with contamination in the x-direction (n=30)  
  
  Parameter   LTS    S    M    MM    TELBS   
10%   
Bias   
  
MSE   

𝛽0   0.0006    0.0135    0.0106    0.0096    0.0003  

𝛽1   0.0175    0.0024    2.9442    0.0100    0.0048  

𝛽2   0.0193    0.0029    2.9463    0.0072    0.0068   

𝛽0   0.1618    0.1091    0.6456    0.0430    0.0472   

𝛽1   0.1775    0.1213    8.6988    0.0646    0.0520  

𝛽2   0.1829    0.1289    8.7063    0.0622    0.0524  

20%   
Bias   
  
MSE   

𝛽0   0.0001    0.0092    0.0449    0.0041    0.0097   

𝛽1   0.0058    0.0245    2.9683    0.0093    0.00003  

𝛽2   0.0007    0.0154    2.9684    0.0025    0.0001  

𝛽0   0.1471    0.0939    0.5305    0.0508    0.0523   

𝛽1   0.1752    0.1216    8.8106    0.0744    0.0574  

𝛽2   0.1790    0.1297    8.8114    0.0729    0.0542  
40%   
Bias   
  
MSE   

𝛽0   0.0146    0.0063    0.0305    0.0054    0.0036   

𝛽1   1.0612    1.7339    2.9695    1.7953    0.0105  

𝛽2   1.0295    1.7392    2.9697    1.7851    0.0114   

𝛽0   0.1774    0.2492    0.3478    0.2372    0.0602   

𝛽1   3.2150    5.2153    8.8182    5.3454    0.0703  

𝛽2   3.2074    5.2251    8.8194    5.3484    0.0656  

  
Table 7: Bias and MSE with contamination in the y-direction (n=15)  
  
  Parameter   LTS    S    M    MM    TELBS   
10%   
Bias   
  
MSE   

𝛽0   0.0143    0.0078    0.0204    0.0097    0.0002  

𝛽1   0.0415    0.0184    1.2148    0.0156    0.0034  

𝛽2   0.0247    0.0164    1.0158    0.0187    0.0149   

𝛽0   0.2929    0.1992    22.7041    0.1042   0.1227   

𝛽1   0.3675    0.2245    144.0982    0.1153   0.1614  

𝛽2   0.4045    0.2210    145.7049    0.1239   0.1526  
20%   
Bias   
  
MSE   

𝛽0   0.0143    0.0201    2.4941    0.0049    0.0137  

𝛽1   0.0118    0.0115    9.6629    0.0167    0.0037  

𝛽2   0.0146    0.0133    8.0754    0.0082    0.0043  

𝛽0   0.2673    0.1701    401.0656    0.1025    0.1324   

𝛽1   0.3623    0.1972    1484.186    0.1278    0.1651  

𝛽2   0.3676    0.2014    1105.711    0.1332    0.1687  

40%   
Bias   
  
MSE   

𝛽0   0.0097    1.4106    32.4270    4.2684    0.0013   

𝛽1   0.0018    4.4432    98.1562    18.6975    0.0071  

𝛽2   0.0203    4.6559    100.8857    19.6652    0.0214   

𝛽0   0.1644    370.1686    4344.272    1001.424    0.1673   

𝛽1   0.2174    1181.942    16414.03    3050.492    0.2545  

𝛽2   0.2200    1293.672    17105.19    3449.291    0.2808  
 
Table 8: Bias and MSE with contamination in the y-direction (n=30)  
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  Parameter   LTS    S    M    MM    TELBS   

10%   
Bias   
  
MSE   

𝛽0   0.0183    0.0047    0.0355    0.0075    0.0156  

𝛽1   0.0088    0.0179    0.1092    0.0068    0.0061  

𝛽2   0.0207    0.0111    0.1175    0.0009    0.0024   

𝛽0   0.1582    0.1002    0.0635    0.0435    0.0507   

𝛽1   0.1904    0.1140    0.0713    0.0465    0.0552  

𝛽2   0.1922    0.1103    0.0742    0.0431    0.0581  
20%   
Bias   
  
MSE   

𝛽0   0.0077    0.0175    0.0038    0.0022    0.0077   

𝛽1   0.0023    0.0062    0.9126    0.0045    0.0055  

𝛽2   0.0026    0.0109    1.1691    0.0001    0.0076  

𝛽0   0.1404    0.0896    24.1282    0.0475    0.0503   

𝛽1   0.1586    0.0979    47.0104    0.0491    0.0603  

𝛽2   0.1701    0.0921    108.3892    0.0498    0.0584  
40%   
Bias   
  
MSE   

𝛽0   0.0096    0.0023    27.9896    0.0087    0.0061   

𝛽1   0.0047    0.0071    86.2142    0.0134    0.0074  

𝛽2   0.0010    0.0107    87.1350    0.0014    0.0054   

𝛽0   0.0882    0.0811    2259.844    0.0727    0.0643   

𝛽1   0.0865    0.0823    11145.62    0.0834    0.0751  

𝛽2   0.1040    0.0912    11531.11    0.0809    0.0737  

  
Table 9: Bias and MSE with contamination in both x and y-direction (n=15)  
  

  Parameter   LTS    S    M    MM    TELBS  
10%   
Bias   
  
MSE   

𝛽0   0.0122    0.0097    0.2276    0.0073    0.0065  

𝛽1   0.0088    0.0026    0.0878    0.0162    0.0078  

𝛽2   0.0091    0.0101    0.1919    0.0182    0.0161   

𝛽0   0.3143    0.2312    4.3738    0.1174   0.1113   

𝛽1   0.4150    0.3584    21.6543    0.2469   0.1338  

𝛽2   0.4478    0.3159    22.2062    0.2289   0.1433  
20%   
Bias   
  
MSE   

𝛽0   0.0257    0.0002    0.3366    0.0014    0.0106  

𝛽1   0.0003    0.0152    0.0514    0.0123    0.0212  

𝛽2   0.0248    0.0181    0.0562    0.0093    0.0283  

𝛽0   0.3565    0.2052    2.0022    0.1325    0.1222   

𝛽1   0.4818    0.3436    5.2538    0.2807    0.1283  

𝛽2   0.5007    0.3403    6.5749    0.2593    0.1392  

40%   
Bias   
  
MSE   

𝛽0   0.0167    0.0061    6.0666    0.0169    0.0265   

𝛽1   0.0532    0.0231    0.0448    0.0175    0.1012  

𝛽2   0.0228    0.0179    0.0371    0.0210    0.0276   

𝛽0   0.3509    0.2635    160.056    0.2073    0.1496   

𝛽1   0.4819    0.3831    0.7726    0.3756    0.2257  

𝛽2   0.4859    0.3997    0.9163    0.3631    0.1975  
 
Table 10: Bias and MSE with contamination in both x and y-direction (n=30)  
  

  Parameter   LTS    S    M    MM    TELBS   

10%  𝛽0   0.0134    0.0047    0.1341    0.0006    0.0021  
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Bias  
  
MSE  

𝛽1   0.0176    0.0065    0.0248    0.0116    0.0091  

𝛽2   0.0147    0.0154    0.0240    0.0092    0.0012   

𝛽0   0.1674    0.1172    0.3124    0.0478    0.0474   

𝛽1   0.1827    0.1388    2.8842    0.0973    0.0581  

𝛽2   0.1759    0.1408    3.2812    0.0964    0.0565  
20%  
Bias  
  
MSE  

𝛽0   0.0046    0.0107    0.3152    0.0011    0.0015  

𝛽1   0.0040    0.0165    0.0214    0.0030    0.0069  

𝛽2   0.0041    0.0054    0.0356    0.0029    0.0034  

𝛽0   0.1579    0.1116    0.2796    0.0527    0.0491   

𝛽1   0.2466    0.1444    0.8944    0.1323    0.0548  

𝛽2   0.1935    0.1449    0.8763    0.1269    0.0563  

40%  
Bias  
  
MSE  

𝛽0   0.0023    0.0005    6.2696    0.0075    0.0067   

𝛽1   0.0029    0.0078    0.0227    0.0012    0.0142  

𝛽2   0.0338    0.0073    0.0080    0.0221    0.0077   

𝛽0   0.1286    0.0936    120.129    0.0802    0.0601   

𝛽1   0.1945    0.1595    0.3154    0.1551    0.0708  

𝛽2   0.1758    0.1606    0.3416    0.1545    0.0686  

 
5 Discussion   
This article presented the recently introduced TELBS robust linear estimator of Tabatabai, et al. [30] 
in comparison to other commonly used robust linear estimators, in particular M, LTS, S, and MM. The 
application of these linear robust estimators to two data sets, representing brain weight and interstitial 
lung disease (ILD) extends the results of Tabatabai, et al. [30] in illustrating the value of the TELBS 
estimator when applying linear regression to real data sets. In both cases the TELBS estimator performs 
favorably in comparison with these other robust linear estimators, with TELBS and MM at a 
comparable level of effectiveness. While both MM and TELBS yield results that are close to those of 
OLS with outliers removed, the TELBS estimator is slightly closer for both these cases. A more in depth 
comparison of the M, LTS, S, MM, and TELBS robust estimators through computer simulation yields 
an extended comparison of the performance of these estimators, and the results are comparable. 
Results of this simulation reveal deficiencies in M estimation, which fails to provide good estimates in 
some cases, especially when the sample size is small and the outliers are in x- direction. LTS, S, MM 
perform well in most cases except when the contamination level is high 40% . TELBS robust method 
performs well in all cases considered and outperforms other methods considered in this study as the 
percentage of outliers increases. It provides a flexible and powerful alternative to the practitioners in 
the field of robust linear regression. 
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