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1 Introduction   

 Fractional differential equations are 

now recognized as an excellent source 

of knowledge in modelling dynamical 

processes in self similar and porous 

structures, electrical networks, 

probability and statistics, visco 

elasticity, electro chemistry of 

corrosion, electro dynamics of complex 

medium, polymer rheology, industrial 

robotics, economics, biotechnology etc. 

See the recent monograph [2, 11-14, 16, 

23, 29] for theory and applications of 

fractional differential equations. 

Oscillatory solution plays an important 

role in the quantitative and qualitative 

theory of fractional differential 

equations. There are several papers 

dealing with oscillation of scalar 

fractional ordinary differential 

equations [3-5, 9, 24, 27-28]. However, 

only a few results have appeared 

regarding the oscillatory behavior of 

scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in.    

In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of 

vector differential equations, where H is a unit vector in Rn . We refer the articles [6-7] for vector 

ordinary differential equations and [8, 15, 17, 25] for vector partial differential equations. To the present 

time, there exists almost no literature on oscillation results for vector fractional ordinary differential 

equations and vector fractional partial differential equations, particularly for vector fractional 
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nonlinear partial differential equations. Motivated by this, we initiate the fractional order vector partial 

differential equations for delay equations.  

Formulation of the problems: The oscillatory theory of fractional differential equation was 

introduced by  

Grace et al [9]   

 Daqx  f1(t,x) = v(t)  f2(t,x)  lim J1a q x(t) = b,  

t a  

 where Daq denotes the Riemann-Liouville differential operator of q , where 0 < q <1.  

Chen [4] and Han et al [28] studied the oscillation of the fractional differential equation with Liouville 

right sided fractional derivative of order  of the following form   

     q(t) f (s t) y(s)ds    = 0, t > 0,  r(t) D  y (t)  

   t  

 y(t)   p(t) f  (s t) y(s)ds  = 0, t > 0.   r(t)g(D  

 t  

Prakash et al. [18] and Sadhasivam and Kavitha [21] investigated the fractional partial differential 

equation with Riemann-Liouville left sided definition on the half axis R  of the form   

    t     

  r(t)D ,tu(x,t)  q(x,t) f  (t  v) u(x,v)dv  = a(t) u(x,t), (x,t)  R  = G,  

 
t  0  

 with the Neumann boundary condition   

u(x,t) 

  = 0, (x,t)  R .  

 
N 

  m   t     

  

  p(t)g(D ,tu(x,t))  q j (x,t) f j  (t  s) u(x,s)ds  = a(t) u(x,t)  F(x,t), 

(x,t) R  = G,  

 
t j=1    0  

subject to the boundary condition   

u(x,t) 

  (x,t)u(x,t) = 0, (x,t)  R .  

 
 

 To the best of our knowledge, nothing is known regarding the H-oscillatory behavior for the following 

class of vector fractional partial differential equations with forced term of the form   

m 

  D ,t r(t)D ,tU(x,t) = a(t) U(x,t)  ai (t) U(x, i (t))  

i=1 

k t  
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   p j (x,t) f j  (t  s)U(x, j (s)) ds U(x, j (t))  

 0  

j=1 

  F(x,t), (x,t) G = R ,  

  

R  = (0, ) , where  is a bounded domain in Rn with a piecewise smooth boundary , (0,1) is 

a  

constant, D ,t is the Riemann-Liouville fractional derivative of order  of u with respect to t ,  is 

the Laplacian  

2 

n n  u(x,t) 

operator in the Euclidean n - space R (ie) u(x,t) =  2 and U(x, j (s)) is the usual Euclidean 

norm in  

r=1 xr 

Rn   .   

  

Equation (1.1) is supplemented with the following boundary conditions   

U(x,t) 

  (x,t)U(x,t) = 0, (x,t) R ,  (1.2)  

 
 

where  is the unit exterior normal vector to  and (x,t) is positive continuous function on  

R  and   

  U(x,t) = 0, (x,t) R .  (1.3)  

 In what follows, we always assume without mentioning that  

(A1)   r(t) C (R ;R ),a(t),ai (t) C(R ;R ),i =1,2,...m ;  

(A2 )   j , i C(R ;R), lim j (t) = lim i (t) = ,i =1,2,...m, j =1,2,...,k ;  

t  t  

(A3)   p j C(G;R) and p j (t) = minx  p j (x,t), j Ik = 1,2,...,k ;  

(A4 )   F C(G;Rn), fH (x,t) C(G;R) and  fH (x,t)dx  0;  

 

(A5 )   f j C(R ;R) are convex and non decreasing in R with uf j (u) > 0 for u  0 and there exist positive  

f j (u) 

 
constants j such that  j for all u  0, j Ik . u  

The study of H-oscillatory behavior of fractional partial differential equation is initiated in this paper. 

Our approach is to reduce multi-dimensional problems for (1.1) to one dimensional oscillation 

problems for scalar functional fractional differential inequalities. The purpose of this paper is to 

establish some new H-oscillation criteria for equation (1.1) with (1.2) and equation (1.1) with (1.3) by 

using a generalized Riccati technique and integral averaging method. Our results are essentially new.    
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2 Preliminaries   

In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some 

notations which are useful throughout this paper. There are serveral kinds of definitions of fractional 

derivatives and integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-

axis R . The following notations will be used for the convenience.  

uH (x,t) = U(x,t),H , fH (x,t) = F(x,t),H ,   

1 

  VH (t) =  uH (x,t)dx, where  =  dx.  (2.1)  

   

Definition: 2.1 By a solution of  (1.1),(1.2) and  (1.3) we mean a non trivial function  

 
U(x,t) C2 (G;Rn) C2(G [tˆ 1, );Rn) C(G [~ t 1, );Rn) and satisfies (1.1) on G and the 

boundary conditions  

(1.2) and (1.3), where tˆ 1 = min 0, min inf i (t)  , ~t 1 = min 0, min inf j (t)  

 .   

 1 i m t 0   1  j m t 0  

Definition: 2.2 Let H be a fixed unit vector in Rn . A solution U(x,t) of (1.1) is said to be H-oscillatory 

in  

G if the inner product U(x,t),H  has a zero in (t, ) for any t > 0 . Otherwise it is H-nonoscillatory.   

Definition: 2.3 The Riemann-Liouville fractional partial derivative of order 0 < <1 with respect to t 

of a  

function u(x,t) is given by   

  D ,tu(x,t) :=  1 t (t v) u(x,v)dv,  (2.2)  

 
t (1 ) 0 

 provided the right hand side is pointwise defined on R where  is the gamma function.   

Definition: 2.4 The Riemann-Liouville fractional integral of order  > 0 of a function y : R   R on 

the half-axis R  is given by   

1 t   1 

 

I  y(t) :=  (t v) y(v)dv for t > 0,  (2.3)  

 
( ) 0 

 provided the right hand side is pointwise defined on R .  

Definition: 2.5 The Riemann-Liouville fractional derivative of order  > 0 of a function y : R   R 

on the half-axis R  is given by   

  D  y(t) :=    I y (t) for t > 0,  

dt 

 provided the right hand side is pointwise defined on R  where  is the ceiling 

function of  .   

Lemma: 2.1 [11] Let y be solution of (1.1) and   

(2.4)  
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d  

 
 where m is 

a positive 

integer.   

  

3 H-

Oscillation of the problem (1.1),(1.2)  

  

 We begin with the following Lemma.   

Lemma: 3.1 Assume that (A1) (A5 ) hold. Let H be a fixed unit vector in Rn and U(x,t) be a solution 

of (1.1) . (i)If uH (x,t) is eventually positive, then uH (x,t) satisfies the scalar fractional partial inequality   

m 

  D ,t r(t)D ,tuH (x,t)  a(t) uH (x,t)  ai (t) uH (x, i (t))  

i=1 

k    t   

  p j (t) f j  (t  s) uH (x, j (s))ds uH (x, j (t))  fH (x,t).  (3.1)  

j=1    0  

 (ii)If uH (x,t) is eventually negative, then uH (x,t) satisfies the scalar fractional partial inequality   

m 

  D ,t r(t)D ,tuH (x,t)  a(t) uH (x,t)  ai (t) uH (x, i (t))  

i=1 

k t  

  

  p j (t) f j  (t  s) uH (x, j (s))ds uH (x, j (t))  fH (x,t).  (3.2)  

j=1    0  

Proof. Let uH (x,t) be eventually positive. Taking the inner product of (1.1) and H, we get   

m 

  D ,t r(t)D ,t U(x,t),H = a(t) U(x,t),H  ai (t)  U(x, i (t)),H  

i=1 

k t  

 

  p j (x,t) f j  (t  s) U(x, j (s)) ds  U(x, j (t)),H  F(x,t),H,  

j=1    0  

 that is,   

m 

  D ,t r(t)D ,tuH (x,t) = a(t) uH (x,t)  ai (t) uH (x, i (t))  

i=1 

k 

 

t 

  K(t):=  (t  s)  y(s)ds for (0,1) and t > 0.  

0 

 Then   

(2.5)  

  K (t) = (1 )D  y(t)for (0,1) and t > 0.  

  

Lemma: 2.2 [10] If X and Y are nonnegative, then   

(2.6)  

  mXY m 1  X m  (m 1)Y m,  (2.7)  
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  p j (x,t) f j t(t  s) U(x, j (s)) ds  uH (x, j (t))  fH (x,t).  (3.3)  

j=1    0  

 By (A3), we have   

 t      p j (x,t) f j  (t  s)U(x, j (s))   ds uH (x, j (t))  

 0  

 t    

   p j (t) f j  (t  s)U(x, j (s))   ds uH (x, j (t)),  

 0  

 since f j C(R ,R), j =1,2...k, we have uH (x, j (s))  U(x, j (s)) , therefore   

 t      p j (t) f j  (t  s)U(x, j (s))   ds uH (x, j (t))  

 0  

 t     

   p j (t) f j  (t  s) uH (x, j (s))ds uH (x, j (t)), j =1,2,...,k.  (3.4)  

 0  

 Using (3.4) in (3.3), we get   

m 

  D ,t r(t)D ,tuH (x,t)  a(t) uH (x,t)  ai (t) uH (x, i (t))  

i=1 

k t  

  

  p j (t) f j  (t  s) uH (x, j (s))ds uH (x, j (t))  fH (x,t). 

 0  j=1 

  

Similarly, let uH (x,t) be eventually negative, we easily obtain (3.2). The proof is complete.    

The inner products of (1.2),(1.3) with H yield the following boundary conditions.   

  u H (x,t)   (x,t)uH (x,t) = 0, (x,t) R ,   (1.2)   

 
 

  uH (x,t) = 0, (x,t) R .   (1.3)   

Lemma: 3.2 Assume that (A1) (A5 ) hold. Let H be a fixed unit vector in Rn . If the scalar fractional 

partial inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality 

(3.2) has no eventually negative solutions satisfying the boundary conditions (1.2)  or (1.3) , then 

every solution U(x,t) of the problem (1.1),(1.2) or (1.1),(1.3) is H-oscillatory in G. Proof. Suppose to the 

contrary that there is a H-nonoscillatory solution U(x,t) of (1.1),(1.2) or (1.1),(1.3) in G, then uH (x,t) is 

eventually positive or uH (x,t) is eventually negative. If uH (x,t) is eventually positive, then by Lemma 3.1 

uH (x,t) satisfies the boundry condition (1.2)  or (1.3)  . This contradicts the hypothesis. The similar 

proof follows when uH (x,t)is eventually negative.  Theorem: 3.1  Assume that (A1) (A5 ) and  (A6 ) 

min j I j (t) = (t)  t .  

K 

(A7 ) uH (x,t)  L hold . If the fractional differential inequality   
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k 

j=1 

 has no 

eventually 

negative 

solutions, 

then every solution U(x,t) of (1.1) and (1.2) is H-oscillatory in G .   

Proof. Suppose to the contrary that there exists a solution U(x,t) of (1.1) , (1.2) which is not a H-

oscillatory in G . Without loss of genearality, we may assume that uH (x,t) > 0 in [t0, ) for some t0 

> 0. Integrating (3.1) with respect to x over  , we obtain   

m 

 D  r(t)D uH (t) dx  a(t)  uH (x,t)dx  ai (t)  uH (x, i (t))dx  

   

i=1 

 

k t   

  p j (t)  f j  (t  s) uH (x, j (s))ds uH (x, j (t))dx   fH (x,t)dx, t  t0.  (3.7)  

j=1     0   

Using Green’s formula and boundary condition (1.2)  yield that   

u (x,t) 

   uH (x,t)dx =  H dS =  (x,t)uH (x,t)dS  0, t  t0  (3.8)  

 
    

and   

   uH (x, i (t))dx =  u H (x, i (t))   dS =  (x,t)uH (x, i (t))dS  0,  

 
    

  i =1,2,...m, t  t0.  (3.9)  

 By using Jensen’s inequality (A6 ),(A7 ) and (2.1) , we get   

 t     

   f j  (t  s) uH (x, j (s))ds uH (x, j (t))dx 

  0    

   Lf j  0t (t  s) uH (x, j (s))ds dx     

   Lf j t(t  s)   uH (x, j (s))dx ds    

 0     

   L  dxf j t(t  s)   uH (x, j (s))dx(  dx) 1 ds    

  0      

 t   

   L  dxf j  (t  s) VH ( j (s))ds   

  0  

   L  dxf j (KH (t)) t  t0.  (3.10)  

 

  D  r(t)D VH (t)  L p j (t) f j (KH (t))  0,  

j=1 

has no eventually positive solutions and the fractional differential inequality   

(3.5)   

k 

  D r(t)D VH (t)  L p j (t) f j (K H (t))  0,  (3.6)  
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 Also by (A4 ) ,   

   fH (x,t)dx  0.  (3.11)  

 

 In view of (2.1), (3.8)-(3.11), (3.7) yield   

k 

  D  r(t)D VH (t)  L p j (t) f j (KH (t))  0.  (3.12)  

j=1 

Therefore, VH (t) is an eventually positive solution of (3.5). This contradicts the hypothesis. The case 

where uH (x,t) < 0 in [t0, ) can be treated similarly and we are also getting a contradiction. The 

proof is now complete.  Theorem: 3.2  Suppose that the conditions (A1) (A7 )and   

 1  

  t0      r(s)  ds =   (3.13)  

 
 hold  

Futhermore, assume that there exists a positive function C ((0, );R ) such that   

 ~ k ~p j(s)  ~r (s) ~ (s~) 2    ds = , (3.14)  limsup L (s) j 

 
 1    j=1 4 (1 ) (s)  

 where j are defined as in (A5 ) . Then every solution of U(x,t) of the problem (1.1),(1.2) is H-oscillatory 

in G .   

Proof. Suppose to the contrary that there exists a solution U(x,t) of the problem (1.1),(1.2) which is not 

Hoscillatory in G . Without loss of generality we may assume that uH (x,t) > 0 in [t0, ) for some t0 

> 0 .   

That is, VH (t) is an eventually positive solution of (3.5). Then there exists t1  t0 such that VH (t) > 0 

and KH (t) > 0 for t  t1. Therefore, it follows from (3.5) that   

k 

Suppose 

not, then 

D VH (t) 

< 0 and 

there exists t2 [t1, ) such that D VH (t2) < 0. Since r(t)D VH (t) is strictly decreasing on [t1, ). It 

is clear that   

  r(t)D VH (t) < r(t2)D V(t2) := c,  

 where c > 0 is a constant for t [t2 , ). Therefore from (2.6), we have   

KH  (t)   c  
  = D VH (t) <  r(t)   for t [t2 , ).  

 

 
(1 )  

 Then, we get   

 1  K H  (t) 

     r(t)    c (1 )   for t [t2 , ).  

  D  r(t)D VH (t)  L p j (t) f j (KH (t)) < 0 for t [t1, ).  

j=1 

 Thus D VH (t)  0 or D VH (t) < 0,t  t1 for some t1  t0. We now claim that   

(3.15)  

  D VH (t)  0, for t  t1.  (3.16)  
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 Integrating the above inequality from t2 to t , we have   
t  1  K (t)  K (t ) 

 

 
  t2    r(s) ds   Hc (1 H)   2  

  < K H (t2 )   for t [t2, ).  

 
c (1 )  Letting t  , we get   

ds   2    r(1s)  cK (1H ( t2 ) )   < . t  

 This contradicts (3.13). Hence D VH (t)  0 for t [t1, ) holds. Define the function W(t) by the 

generalized Riccati substitution   

r(t)D VH (t)   for t [t1, ).  (3.17)  

  W(t) = (t) 

 
KH (t) 

 Then we have W(t) > 0 for t [t1, ). From (2.6),(2.7), (3.5)and (A5 ) it follows that   

  D W(t) = (t) D r(t)D VH (t)  D   (t)   r(t)D VH (t)  

 

 
KH (t) KH (t)  

   (t)L k p j (t) f j (KH (t))    KH (t)D (t) (t)D  KH (t) r(t)D VH (t)  

 
KH (t )  KH2 (t)    

j=1 

k     

   L (t) j p j (t)  D (t)W(t)  D  KH (t) W(t).  (3.18)  

 

 
j=1   (t) K H (t) 

Let W(t) = W~( ), (t) = ~ ( ), p j (t) = ~p j ( ),KH (t) = K~ H ( ) .  

Then D W(t) =W~ ( ), D (t) = ~ ( ) . Then the above inequality becomes  k ~ ~ 

~ ~  ~pj ( )  ~ ( )W~( )  K~H    ( )W~ ( )  

  W ( )  L ( ) j 

 
( ) K ( ) 

j=1 H 

 L ~( ) jk=1    ~p j( ) ~~ ( )W~( )  (1  ~ )~rW~ ( 2) ( ) .  (3.19) j 

( ) ( ) 

(1 ) ~ 1   ~r( ) ~ 

 Taking   m = 2, X = ~( ) ~r ( )W( ), Y = 2   (1 ) ~( ) ( ).  (3.20)  
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j=1   4 

(1 ) ( ) 

 Integrating both sides of the above inequality from 1 to , we obtain   L ~(s) k    ~pj 

(s)  1 ~r (s) ~ (~s) 2 ds W~( 1) W~( ) < W~ ( 1).  

 
j 

1  j=1 4 (1 ) (s)   

  

 Taking the limit supremum of both sides of the above inequality as , we get   

  limsup L ~(s) k    ~pj (s)  1 ~r(s) ~ (~s) 2 ds < W~ ( 1) < ,  

 
j 

 1    j=1 4 (1 ) (s)  

 which contradicts (3.14) and completes the proof.   

Theorem: 3.3  Suppose that the conditions (A1) (A7 ) and (3.13) hold. Futhermore, suppose that there 

exists a positive function C ((0, );R ) and a function P C(D,R) where D := (t,s):t  s  t0  

such that    

1. P(t,t) = 0 for t  t0 ,  

2. P(t,s) > 0 for (t,s) D0, where D0 := (t,s):t > s  t0  and P has a continuous and non-positive  

P(t,s) 

partial derivative Ps (t,s) =  on D0 with respect to the second variable and satisfies  s 

 
  limsup 1   P( ,s) L ~(s) k    ~pj (s)  1 r~(s) ~ (~s) 2   ds = 

,  (3.22)  

 

 
j 

 P( , 1)   j=1 4 (1 ) (s)  

1 

 where j are defined as in Theorem 3.2. Then all the solutions of U(x,t) of the problem (1.1),(1.2) is H-

oscillatory in G . Proof. Suppose that U(x,t) is H-nonoscillatory solution of (1.1),(1.2) . Without loss of 

generality we may assume that uH (x,t) is an eventually positive solution . Then VH (t) is an eventually 

positive solution of (3.5). Then proceeding as in the proof of Theorem 3.2, to get (3.21)   

  W~ ( )  L ~( ) k j   ~p j ( )  1 r~( ) ~ ( ~) 2   ,  

 
j=1   4 (1 ) ( ) 

multiplying the previous inequality by P( ,s) and integrating from 1 to  for [ 1, ) , we obtain  

P( ,s) L ~(s) k    ~pj (s)  1 r~ (s) ~ (~s) 2 ds  P( ,s)W~(s)   

Ps ( ,s)W~ (s)ds j 

 
  j=1 4 (1 ) (s)  1 1 

 Using Lemma 2.2 and (3.20) in (3.19), we have    

k ~r( ) ~ ( ) 2 

~ ~ 

  W ( )  L ( ) j   ~pj ( )  1 ~ .  (3.21)  
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1  

~  ~ ~ 

   P( , 1)W ( 1)   Ps ( ,s)W(s)ds < P( , 1)W( 1).   

 

1 

 Therefore   1 P( ,s) L ~(s) k j   ~pj (s)  1 ~r (s) ~ (~s) 2 ds < W~ 

( 1) < ,  

 

 
P( , 1)   j=1 4 (1 ) (s)  

1 

 which is a contradiction to (3.22).The proof is complete.   

Corollary 3.1  Assume that the conditions of Theorem 3.3 hold with (3.22) replaced by   

 k 

1  ~    ~p j (s)ds = ,   limsup P( ,s)L (s) j 

 
 P( , 1)  j =1 

1 

 

1 ~r(s) ~ (s) 2 

  limsup P( ,s) ~ ds < ,  

 

 
 P( , 1)  (1 ) (s) 

1 

 then every solution U(x,t) of (1.1),(1.2) is H-oscillatory in G .  Next, we consider the case   

 1 

   ds < ,  (3.23)  

 
t0   r(s) 

 which yields that (3.13) does not hold. In this case, we have the following result. 

Theorem: 3.4  Suppose that the conditions (A1) (A7 ) and (3.23) hold and that there exists a positive 

function C ((0, );R ) such that (3.14) holds. Futhermore, assume that for every constant T 

0 , where  

T = max 3, 4   

  k   

    ~r (1u)   j  ~p j (s)ds du = .  (3.24)  

 
T    j=1 T  

 

~    ~ 
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 Then every solution of VH ( ) of (3.5) is H-oscillatory or satisfies lim  s  VH (s)ds = 0. Proof. 

Suppose  

 

0 that U(x,t) is H-nonoscillatory solution of (1.1),(1.2) . Without loss of generality we may assume that 

uH (x,t) is an eventually positive solution . Then VH (t) is an eventually positive solution of (3.5). Then 

proceeding as in the proof Theorem 3.2, there are two cases for the sign of D VH (t) . The proof when 

D VH (t) is eventually positive is similar to that of Theorem 3.2 and hence is omitted. Next, assume 

that D VH (t) is eventually negative. Then there exists  

t3  t 2 such that D VH (t) < 0 for t  t3.From (2.6), we get   

  K H (t) = (1 )D VH (t) < 0, for t  t3.  

~ ~ ~ ~ 

Then KH  ( ) = (1 )VH  ( ) < 0 for 3. Thus we get lim KH ( ):= M1  0 and KH ( )  

M1. We claim that  

 

M1 = 0 . Assume not, that is, M1 > 0 then from (A5 ) , we get   

k 

D  r(t)D VH (t)  L p j (t) f j KH (t)   

j=1 

k 

 LM1 j p j (t), for t [t3, ).  

j=1 

Let r(t) = ~r ( ),VH (t) = V~H ( ), p j (t) = ~p j ( ) .  

Then D VH (t) = V~H  ( ),D  r(t)D VH (t) = ~r( )V~H  ( )    .  

Using these values, the above inequality becomes   
~r( )V~H  ( )   LM1 k j ~p j ( ), for [ 3, ). Integrating both sides of the last 

inequality from 3 to , we have   

j=1 

 ~  1 k   ~pj (s)ds  

~r (s)VH  (s) ds  LM j 

3 j=1 3 

k    k    
~r ( )V~H  ( )  r( 3)V~H  ( 3)  LM1 j  ~pj (s)ds  k1  LM1 j  ~p j (s)ds  

j=1  3 j=1 3 

k  

k  K~   LM1 j  ~p j (s) ds 

~p (s)ds. 

 LM1  j  j  Hence from (2.6), we get   H ( ) =V~H  ( )  j=1~r( )  .  

 

 
j=1   3 (1 ) 

k    

j  ~p j (s)ds 
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~  j=1 3 

 Integrating the last inequality from 4 to , we get KH ( )  KH ( 4 ) (1 )LM1  4   ~r (u)   

du.  

 
 

~ ~ 

 Letting , from (3.24), we get lim KH ( ) = . This contradicts KH ( ) > 0. Therefore we have 
M1 = 0, that  

 

~   ~ is, lim KH ( ) = 0. That is, lim  ( s) VH (s)ds = 0 . Hence the proof.   

  0 

  

4 H-Oscillation of the problem (1.1),(1.3)  

  

 In this section we establish sufficient conditions for the oscillation of all solutions of (1.1),(1.3). For this 

we need the following:The smallest eigen value 0 of the Dirichlet problem. (x) (x) = 0

 in , (x) = 0 on , is positive and the corresponding eigen function (x) is 

positive in . 

Theorem: 4.1  Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of U(x,t) of 

(1.1) and (1.3) H-oscillates in G . Proof. Suppose that U(x,t) is a H-nonoscillatory solution of (1.1) and 

(1.3) . Without loss of generality we may assume that uH (x,t) > 0, in [t0, ) for some t0 > 0. 

Multiplying both sides of the Equation (3.1) by (x) > 0 and then integrating with respect to x over .,  

m 

we obtain for t  t1,  D  r(t)D uH (x,t) (x)dx  a(t)  uH (x,t) (x)dx  ai (t)  uH (x, i 

(t)) (x)dx  

   

i=1 

 

k t     

  p j (t)  f j  (t  s) uH (x, j (s))ds uH (x, j (t) (x)dx   fH (x,t) (x)dx.  (4.1)  

  0   

j=1 

 Using Green’s formula and boundary condition (1.3)  it follows that   

   uH (x,t) (x)dx =  uH (x,t) (x)dx = 0  uH (x,t) (x)dx  0, t  t1  (4.2)  

   

 and   

   uH (x, i (t)) (x)dx =  uH (x, i (t)) (x)dx = 0  uH (x, i (t)) (x)dx  0,  

   

  t  t1, i =1,2,...m.  (4.3)  

 By using and Jensen’s inequality, (A6 ) and (A7 ) we get    f j t (t  s) uH (x, j (s))ds  
uH (x, j (t)) (x)dx  

  0  
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(t  s)     Lf j 0t(t  s) uH (x, j (s)) (x)ds dx    

  Lf j 0t uH (x, j (s)) (x)dx ds    

 

 t    uH (x, j (s)) (x)dx( (x)dx) 1 ds . Set   

   L (x)dxf j  (t  s)  

  0      

1 

  VH (t) =  uH (x,t) (x)dx (x)dx  , t  t1.  (4.4)  

     t     

Therefore,   f j  (t  s) uH (x, j (s))ds uH (x, j (t)) (x)dx  L (x)dxf j (KH (t)) , t  t1, 

j Im.  (4.5)  

  0   

 By (A5 ) ,  fH (x,t) (x)dx  0.                                                                                 (4.6)  
                               

k 

 In view of (4.4), (4.2)-(4.6), (4.1) yields D  r(t)D VH (t)  L p j (t) f j (KH (t))  0,  (4.7)  

j=1  for t  t1. Rest of the proof is similar to that of Theorems 3.2 and 3.3, and hence the details are 

omitted.   

  

Corollary 4.1  If the inequality (4.7) has no eventually positive solutions, then every solution U(x,t) of 

(1.1) and (1.3) is H-oscillatory in G .   

Corollary 4.2  Let the conditions of Corollary 3.1 hold; then every solution U(x,t) of (1.1) and (1.3) is 

Hoscillatory in G .  

~ 

 Theorem: 4.2  Let the conditions of Theorem 3.4 hold; Then every solution VH ( ) of (4.7) is H-

oscillatory  

 
 ~ or satisfies lim  s  VH (s)ds = 0. The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2 

are similar to that of in  

 

0 

Section 3 and hence the details are omitted.    

5 Examples  

In this section we give an example to illustrate the results established in Sections 3. Example 1. 

Consider the vector fractional partial differential equation   

  

 
D 13,t t 23 D 13,tU(x,t)  = 1 t   23 U(x,t)   2  t 31  3   t 32  U(x,t )  

  4    (1)2 4   

 3   

 1   t t  s  3 U x,s   ds  U x,t  2     F(x,t),   (5.1)  

 

1  
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 0  2   

(x,t) G , where G = (0, ) (0, ) (0, ) , with the boundary condition   

 u1(0,t)   = U( ,t) = uu12(( ,,tt))  = 00  , t  0.  

 (5.2)  

U(0,t) = 

u2, (0,t)   

 1 2 

 Here  = 1 ,m =1,k =1,n = 2,r(t) = t, p1(x,t) = 1 , a(t) = t , a1(t) = 2  2 t 3  34t 3 , 1(t) = , 1(t) 

=  2   ,  

 

 

3  4 1    

 3  

1  sin xcost  

 

 

  

 

 t   

   2  2  

 and f1(u) = u . It is easy to see that p1(t) = minx  p1(x,t) = min .  

 
1  

 Let H = e1 = 0  , we observe that fe1 (x,t) = 

 

4  

 fetcost  

 1 

 0,    t  .  

2 2 

~ 

Take 1 =1, 1 =1, (s) = s. It is clear that conditions (A1) (A7 ) and (3.13) hold. Therefore,   

  

L ~(   ~p1(s)  ~r (s) ~ (s~) 2 ds = L s   1  ds  

as .  s) 1 

 
 4 (1 ) (s)   

   1  4 ( )s  

1 

 3  

3 

3 

  
  
  
  
  
  
  
  

 

 

3 
2 2 

3 
2 

3 3 
)) 

3 

1 
( ( 

)) 
3 

1 
( ( 3 

2 

= ) , ( 

t 

t x F 

 

3  

1  

3 

1 
] [0 ,    x 

t x t cos sin 

))  
3  

1 
( ( 3 

2 3 
1  

2 
 

    and    

dx t x 

)) 
3  

1  
( ( 3 

= ) , ( 
2  

 

3    

 
3 
1 

2 3 
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Thus all the conditions of Theorem 3.2 are satisfied. Hence, it follows that every solution U(x,t) of 

(5.1),(5.2) is e1 - 

sin xsin t  

oscillatory in G. Infact U(x,t) =    3  , is one such solution of the problem (5.1) and (5.2). We 

note that the  

0  above solution U(x,t) is not e2  oscillatory in G , where e2 =  1 .    

Acknowledgement: The authors thank Prof.E. Thandapani for his support to complete the paper.   
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