

Journal of Statistical and Mathematical Sciences ISSN 3065-100X

Volume 13 Issue 2 April-June 2025 Impact Factor: 8.99

Enquiry: contact@continentalpub.online

Published by Continental Publication http://continentalpub.online/index.php/jsms

OSCILLATION ANALYSIS IN FRACTIONAL VECTOR PDES: A DETAILED QUANTITATIVE AND QUALITATIVE APPROACH

Dr. Karthik Ramesh Subramanian and Dr. Meena Lakshmi Narayanan

Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College Periyar University, Tamil Nadu, India.

Abstract: Fractional differential equations have gained significant attention for modeling complex processes across various fields such as porous structures, electrical networks, and industrial robotics. They offer a versatile framework for understanding phenomena with self-similar properties, viscoelasticity, and more. This paper delves into the study of oscillatory solutions, a crucial aspect of fractional differential equations, shedding light on their quantitative and qualitative characteristics.

While oscillatory behavior in scalar fractional ordinary differential equations has received some attention in previous research, this paper extends the analysis to scalar fractional partial differential equations, a lessexplored area. By exploring oscillations in this broader context, we contribute to a deeper understanding of complex processes modeled by fractional differential equations.

Keywords: Fractional differential equations, oscillatory behavior, partial differential equations, qualitative analysis, quantitative analysis.

Introduction

Fractional differential equations are now recognized as an excellent source of knowledge in modelling dynamical processes in self similar and porous electrical structures, networks, probability and statistics, visco elasticity, electro chemistry of corrosion, electro dynamics of complex medium, polymer rheology, industrial robotics, economics, biotechnology etc. See the recent monograph [2, 11-14, 16, 23, 29] for theory and applications of fractional differential equations. Oscillatory solution plays an important role in the quantitative and qualitative theory of fractional differential equations. There are several papers dealing with oscillation of scalar fractional ordinary differential equations [3-5, 9, 24, 27-28]. However, only a few results have appeared regarding the oscillatory behavior of

scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in. In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of vector differential equations, where H is a unit vector in \mathbb{R}^n . We refer the articles [6-7] for vector ordinary differential equations and [8, 15, 17, 25] for vector partial differential equations. To the present time, there exists almost no literature on oscillation results for vector fractional ordinary differential equations and vector fractional partial differential equations, particularly for vector fractional

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15911968

nonlinear partial differential equations. Motivated by this, we initiate the fractional order vector partial differential equations for delay equations.

Formulation of the problems: The oscillatory theory of fractional differential equation was

introd	uced by
Grace	et al [9]
$D_a^q x \square$	
$t\Box a^{\Box}$	
where	$eD_{a}{}^{q}$ denotes the Riemann-Liouville differential operator of q , where o < q <1.
Chen [[4] and Han et al [28] studied the oscillation of the fractional differential equation with Liouville
right s	ided fractional derivative of order \square of the following form
	$ \Box \Box \Box q(t) f \Box \Box \Box (s \Box t) \Box \Box y(s) ds \Box \Box = 0, t > 0, \Box \Box r(t) D \Box \Box y(t) \Box $
	$\Box y(t) \Box \Box \Box p(t) f \Box \Box \Box (s \Box t) \Box y(s) ds \Box \Box = 0, \qquad t > 0. r(t)g(D\Box t) = 0$
$\Box t$	
	sh et al. [18] and Sadhasivam and Kavitha [21] investigated the fractional partial differential
	on with Riemann-Liouville left sided definition on the half axis ^R □ of the form
	$r(t)D_{\square,t}u(x,t) \square q(x,t)f \square (t \square v) \qquad u(x,v)dv\square = a(t)\square u(x,t), (x,t) \square \square \square R_{\square} = G,$
_,	
$\Box t$	
	he Neumann boundary condition
$\Box u(x,$	
	$= 0, (x,t) \square \square \square \square R_{\square}.$
$\overline{\square N}$	
	$\square m$ $\square t$ \square
_	$p(t)g(D_{\square,t}u(x,t)) \square q_j(x,t)f_j\square (t\square s) \qquad u(x,s)ds\square = a(t)\square u(x,t) \square F(x,t),$
	$ \Box _{R\Box} = G,$
(,,,,,	
$\Box t$	$j=1$ \square \square \square
	t to the boundary condition
$\Box u(x,$	·
(,	$\square\square(x,t)u(x,t)=0, \ (x,t)\square\square\square\square\square R_{\square}.$
To the	e best of our knowledge, nothing is known regarding the H-oscillatory behavior for the following
class o	of vector fractional partial differential equations with forced term of the form
m	
	$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}U(x,t)\square = a(t)\square U(x,t) \square \square a_i(t)\square U(x,\square_i(t))$
i=1	
k	$t \square$
	II II

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

$ \Box \Box \Box \Box p_{j}(x,t) f_{j} \Box \Box (t \Box s) U(x,\Box_{j}(s)) ds \Box U(x,\Box_{j}(t)) $ $ \Box \circ \Box $ $ j=_{1} \Box F(x,t), \qquad (x,t) \Box G = \Box \Box R_{\Box}, $	
$R_{\square} = (0,\square)$, where \square is a bounded domain in R^n with a piecewise smooth boundary $\square,\square(0,1)$ a constant, D_{\square}^{\square} , t is the Riemann-Liouville fractional derivative of order \square of u with respect to t , \square the Laplacian u	is
Equation (1.1) is supplemented with the following boundary conditions $\Box U(x,t)$ $\Box \Box (x,t)U(x,t) = 0$, $(x,t)\Box\Box\Box\Box R\Box$, (1.2)	
where \square is the unit exterior normal vector to \square and $\square(x,t)$ is positive continuous function on \square $R\square$ and $U(x,t)=0$, $(x,t)\square\square\square\square R\square$. (1.3) In what follows, we always assume without mentioning that $(A_1) \ r(t)\square C\square(R\square;R\square),a(t),a_i(t)\square C(R\square;R\square),i=1,2,m$; $(A_2) \ \square_j,\square_i\square C(R\square;R),\lim_j(t)=\lim_i(t)=\square,i=1,2,m,j=1,2,,k$; $t\square\square t\square\square$ $(A_3) \ p_j\square C(G;R)$ and $p_j(t)=\min_x\square p_j(x,t),j\square I_k=\square 1,2,,k\square$; $(A_4) \ F\square C(G;R^n),f_H(x,t)\square C(G;R)$ and $\square f_H(x,t)dx\square$ o; \square $(A_5) \ f_j\square C(R\square;R)$ are convex and non decreasing in R with $uf_j(u)>0$ for $u\square$ 0 and there exist position $f_j(u)$	
constants \Box_j such that \Box_j for all $u \Box_j$ for all $u \Box_$	on to

using a generalized Riccati technique and integral averaging method. Our results are essentially new.

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

2 Preliminaries

In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some notations which are useful throughout this paper. There are serveral kinds of definitions of fractional derivatives and integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-axis R_{\square} . The following notations will be used for the convenience.

$u_H(x,t) = \langle U(x,t), H, f_H(x,t) = \langle F(x,t), H, \rangle$
$V_H(t) = \qquad \qquad \overline{\Box} u_H(x,t) dx, where \ \Box = \Box \ dx. (2.1)$
Definition: 2.1 By a solution of (1.1) , (1.2) and (1.3) we mean a non trivial function $_$
$\overset{-}{U}(x,t) \square C^{2} \square (G;R^n) \square C^2 (G \square [t^{}_{\square_1},\square);R^n) \square C (G \square [_{t^{}_{\square_1}},\square);R^n) \text{ and satisfies (1.1) on } G \text{ and the}$
boundary conditions
(1.2) and (1.3), where $t \cap_{\square} = min \cap_{$
$\square 1\square i\square m \ \square t\square o \square \square 1\square j\square m \ \square t\square o \square \square$
Definition: 2.2 Let H be a fixed unit vector in \mathbb{R}^n . A solution $U(x,t)$ of (1.1) is said to be H -oscillatory
in
<i>G</i> if the inner product $\langle U(x,t),H\rangle$ has a zero in $\Box\Box(t,\Box)$ for any $t>0$. Otherwise it is H-nonoscillatory.
Definition: 2.3 The Riemann-Liouville fractional partial derivative of order $0 < \square < 1$ with respect to t of a
function $u(x,t)$ is given by
$D^{\square}_{\square,t}u(x,t) := {}^{\square}_{} \qquad {}^{\square}_{}^{t}(t \square v)^{\square\square}u(x,v)dv, \qquad (2.2)$
$\Box t \Box (1\Box \Box) o$
provided the right hand side is pointwise defined on R_{\square} where \square is the gamma function.
Definition: 2.4 The Riemann-Liouville fractional integral of order $\square > 0$ of a function $y : R \square \square R$ on the helf axis $R \square$ is given by
the half-axis R_{\square} is given by 1 t $\square \square 1$
$I_{\square} y(t) := \qquad \square (t \square v) \qquad y(v) dv for \qquad t > 0, (2.3)$
$\Box(\Box)$ o
provided the right hand side is pointwise defined on R_{\square} .
Definition: 2.5 The Riemann-Liouville fractional derivative of order $\square > 0$ of a function $y : R \square \square R$
on the half-axis R_{\square} is given by
$D^{\square} y(t) := \square \square \square \square \square \square \square \square \square y \square (t) \text{for} t > 0, \tag{2.4}$
dt
provided the right hand side is pointwise defined on R_{\square} where $\square \square \square$ is the ceiling
function of \square .
Lemma: 2.1 [11] Let <i>y</i> be solution of (1.1) and

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

t		20111111poi, 1011019, 10102	(2.5)	$d\Box\Box\Box$
o Then	$K(t) := \square (t \square s)^{\square \square} y(s) ds \text{ for } \square \square(0,1) \text{ and }$	<i>t</i> > 0.		where <i>m</i> is a positive integer.
THEI	$K\square(t) = \square(1\square\square)D^{\square}\square y(t)$ for $\square\square(0,1)$ and	<i>t</i> > 0.	(2.6)	
Lemr	na: 2.2 [10] If <i>X</i> and <i>Y</i> are nonnegative, then			3 H-
Oscil	$mXY^{m\Box_1}\Box X^m\Box (m\Box_1)Y^m$, lation of the problem (1.1),(1.2)		(2.7)	
Lemr	egin with the following Lemma. na: 3.1 Assume that $(A_1) \square (A_5)$ hold. Let H be $(A_1) \square (A_5)$ hold. Let $(A_1) \square (A_5)$ is eventually positive, then $(A_1) \square (A_2)$			
i=1	$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_H(x,t)\square\square a(t)\square u_H(x,t)\square\square$	$\exists a_i(t) \Box u_H(x, \Box_i(t))$		
k		$(x,\square_j(t))$ \square $f_H(x,t)$. (3.1)		
<i>j</i> =1 (ii)If ¹	\square \circ \square $^{u}_{H}(x,t)$ is eventually negative, then $^{u}_{H}(x,t)$ satisfies	ies the scalar fractional partia	l ineau	ality
m		-	i moqu	
i=1	$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_H(x,t)\square\square a(t)\square u_H(x,t)\square\square$	$\exists a_i(t) \sqcup u_H(x, \vdash_i(t))$		
k	t \square	$(v \square : (t)) \square f_{tt}(v t) (2.2)$		
j=1		$(x, \sqcup_J(t)) \sqcup JH(x,t).$ (3.2)		
	Let $u_H(x,t)$ be eventually positive. Taking the in	nner product of (1.1) and H, w	e get	
m	$D^{\square}_{\square,t} \square r(t)D_{\square}^{\square}_{,t} \langle U(x,t), H \rangle \square = a(t) \square \langle U(x,t), H \rangle$	$U(x,\Box_i(t))$ $U(x,\Box_i(t))$	H	
i=1				
k	t \square \square \parallel \langle	<i>></i>		
<i>j</i> =1	$\Box \Box p_{j}(x,t) f_{j} \Box \Box (t \Box s) \ U(x,\Box_{j}(s)) \ ds \Box \ U(x,\Box_{j$	$(x, \square_j(t)), H \square F(x,t), H,$		
that is	$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_H(x,t)\square = a(t)\square u_H(x,t)\square\square$	$a_i(t) \Box u_H(x_{\cdot} \Box_i(t))$		
<i>i</i> =1 <i>k</i> □		a. (-)—a.i. (vi, 1 (v))		

Vol. 13 No. 2 Imp. Factor	r: 8.99
DOI:https://doi.org/10.5281/zenodo.1592	
	3.3)
By (A_3) , we have	
$\Box t \qquad \Box \Box \Box \qquad p_j(x,t)f_j \parallel \Box \Box (t \square s)U(x,\Box_j(s)) ds \Box u_H(x,\Box_j(t))$	
since $f_j \square C(R_{\square}, R), j = 1, 2k$, we have $\psi_H(x, \square_j(s)) \square U(x, \square_j(s))$, therefore $\square t \square \square \square \square \square p_j(t) f_j \parallel \square \square (t \square s) U(x, \square_j(s)) ds \square u_H(x, \square_j(t))$	
$\Box t \Box \Box \Box p_j(t)f_j \parallel \Box \Box (t \Box s)U(x,\Box_j(s)) ds \Box u_H(x,\Box_j(t))$	
$\Box p_{j}(t)f_{j}\Box\Box (t\Box s) \qquad u_{H}(x,\Box_{j}(s))ds\Box u_{H}(x,\Box_{j}(t)), j=1,2,,k. (3.4)$	
Using (3.4) in (3.3), we get	
m	
$D^{\square}_{\square,t}\square r(t)D^{\square}_{\square,t}u_{H}(x,t)\square\squarea(t)\square u_{H}(x,t)\square\square a_{i}(t)\square u_{H}(x,\!\square_{i}(t))$	
i=1	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
$\square \square \square$ $\square \square p_j(t) f_j \square \square (t \square s) u_H(x,\square_j(s)) ds \square u_H(x,\square_j(t)) \square f_H(x,t).$	
· · · · · · · · · · · · · · · · · · ·	
Similarly, let $u_H(x,t)$ be eventually negative, we easily obtain (3.2). The proof is complete.	
The inner products of (1.2) , (1.3) with H yield the following boundary conditions.	
$\Box u^{H(x,t)} \Box \Box (x,t)u_H(x,t) = 0, (x,t)\Box \Box \Box \Box R_{\Box}, (1.2)\Box$	
$u_H(x,t) = 0, (x,t) \square \square \square \square R_{\square}. \tag{1.3} \square$	
Lemma: 3.2 Assume that $(A_1) \square (A_5)$ hold. Let H be a fixed unit vector in \mathbb{R}^n . If the scalar fract	
partial inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality	•
(3.2) has no eventually negative solutions satisfying the boundary conditions $(1.2)\square$ or $(1.3)\square$,	
every solution $U(x,t)$ of the problem (1.1),(1.2) or (1.1),(1.3) is H-oscillatory in G. Proof. Suppose to contrary that there is a H-nonoscillatory solution $U(x,t)$ of (1.1),(1.2) or (1.1),(1.3) in G, then $u_H(x,t)$	
eventually positive or $u_H(x,t)$ is eventually negative. If $u_H(x,t)$ is eventually positive, then by Lemm	
$u_H(x,t)$ satisfies the boundry condition (1.2) \square or (1.3) \square . This contradicts the hypothesis. The si	
proof follows when $u_H(x,t)$ is eventually negative. Theorem: 3.1 Assume that $(A_1) \square (A_5)$ and	(A_6)
$\min_{j \square I} \square \square_j(t) \square = \square(t) \square t$.	
K $(A_7) u_H(x,t) \square L$ hold . If the fractional differential inequality	
(11/) un (1,51) in D Hold. It the fractional differential inequality	

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

	$D^{\square}_{\square} \square r(t)D^{\square}_{\square}V_{H}(t)\square \square L\square p_{j}(t)f_{j}(K_{H}(t))\square 0,$	(3.5)	
	eventually positive solutions and the fractional differential inequality		<i>j</i> =1 has no eventually
k	$D_{\square}{}^{\square}\Box r(t)D_{\square}{}^{\square}V_{H}(t)\Box\Box L\Box p_{j}(t)f_{j}(K_{H}(t))\Box \mathrm{o},$	(3.6)	negative solutions,
Proof. oscilla > o. Ir	very solution $U(x,t)$ of (1.1) and (1.2) is H-oscillatory in G . Suppose to the contrary that there exists a solution $U(x,t)$ of (1.1), (1.2) vectory in G . Without loss of genearality, we may assume that $u_H(x,t) > 0$ in $\square \square$ at legal to G in the spect to G over \square , we obtain		is not a H-
m $\square D^{\square_1}$ $i=1$	$\Box r(t)D^{\Box} \Box u_{H}(t) \Box dx \Box a(t) \Box \Box u_{H}(x,t) dx \Box \Box a_{i}(t) \Box \Box u_{H}(x,\Box_{i}(t)) dx$		
k j=1	t \square] t_0 .	(3.7)
_	Green's formula and boundary condition (1.2)□ yield that		
$\Box u(x)$	$\Box \Box u_{H}(x,t)dx = \Box \Box \Box \Box \Box (x,t)u_{H}(x,t)dS \Box o, t \Box t_{o} (3.8)$		
	$ub = \Box \Box \Box (x,t)uh (x,t)ub \Box b, t \Box tb (y,b)$		
and	$\square \ \square u_H(x,\square_i(t))dx = \square \ \square u^{H(x,\square_i(t))} \ dS = \square \square \ \square (x,t)u_H(x,\square_i(t))dS \square \ \mathrm{o},$		
By usi	$i = 1,2,m, t \square t_0.$ (3.9) ing Jensen's inequality $\binom{A_6}{1}$, and (2.1), we get		
$\Box t$			
	$\Box f_j \Box \Box (t \Box s) u_H(x, \Box_j(s)) ds \Box u_H(x, \Box_j(t)) dx$		
	$\Box Lf_j\Box\Box\Box\Box\Box\Box\Box\Box\Box ct (t\Box s)^{\Box\Box}u_H(x,\Box_j(s))ds^{\Box}\Box\Box dx_{\Box\Box}\Box\Box ct (t\Box s)\Box\Box\Box\Box u_H(x,\Box_j(s))dx\Box\Box ds\Box\Box$		
□о			
\Box \Box t			
	$\Box L\Box dxf_j\Box\Box (t\Box s) V_H(\Box_j(s))ds\Box$ $\Box O \Box$		
	$\square L\square dx f_j(K_H(t)) \ t\square t_0. \tag{3.10}$		

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

Also by (A_4) ,		D01.11ttp3.//u	101.01 g/ 10.3201/ ZCII	000.13711700
$\Box f_H(x,t)dx \Box o.$	(3.11)			
	(01)			
In view of (2.1), (3.8)-(3.1 k	1), (3.7) yield			
	$(t)\Box\Box L\Box p_{j}(t)f_{j}(K_{H}(t))\Box$] 0. (3.12)		
j=1	$(i) \square \square \square D \square P \cap (i) \cap (RH (i)) \square$	0. (3.12)		
Therefore, $V_H(t)$ is an every where $u_H(x,t) < 0$ in $\Box\Box$	entually positive solution of $ [t_0,\Box] $ can be treated similar theorem: 3.2 Suppose that $ \Box ds = \Box $ (3.13)	rly and we are als	so getting a contra	
	there exists a positive function $c = c + c = c + c = c$			
	$4\Box(1\Box\Box)\Box(s)\Box\Box$			
•	(A_5) . Then every solution (A_5)	of $U(x,t)$ of the pro	blem (1.1),(1.2) is	H-oscillatory
	trary that there exists a solu	tion $II(r,t)$ of the i	nrohlem (1 1) (1 2)	which is not
	it loss of generality we may a	·-	=	
>0.	to room or gornorunity we may t	assume that II (vi)	o, r o 111 — — [0, —	2, 101 001110 0
That is, $V_H(t)$ is an eventu	ually positive solution of (3., herefore, it follows from (3.5		sts $t_1 \square t_0$ such th	$\operatorname{nat} V_H(t) > 0$
$D^{\square}_{\square} \square r(t) D^{\square}_{\square} V_{H}(t)$	$(t)\Box\Box\Box L\Box p_j(t)f_j(K_H(t))$		$ [t_1,\Box).$ (3.15)	k Suppose
j=1 Thus $D^{\square} \square V_H(t) \square$ o or D	$0^{\square}\square V_H(t) < 0, t \square t_1 \text{ for some}$	$t_1 \square t_0$. We now c	laim that	not, then $D^{\square} \square V_H$ (t)
${}^{D\square}\Box V_H(t) \ \Box \ \mathrm{o},$	for $t \square t_1$.		(3.16)	< o and
there exists $t_2 \square [t_1, \square)$ suc is clear that	ch that $D^{\square}_{\square}V_{H}(t_{2}) < 0$. Since	$e r(t)D^{\square} V_H(t)$ is	strictly decreasing	g on $[t_1, \square)$. It
$r(t)^{D\square}\Box V_H(t) < r(t_2)$	$_{2})^{D\square}\Box V(t_{2}):=\Box c,$			
where $c > 0$ is a constant	for $t \square [t_2, \square)$. Therefore fro	m (2.6), we have		
$K_H\square (t)$ \square \square \square				
$=D\Box V_H(t)<\Box\Box r$	$r(t) \square \square \square \qquad for \qquad t \square [t_2]$,□).		
Then, we get				
\Box 1 \Box K H \Box (t)				
	$ \Box \Box c \Box (1\Box \Box) \qquad for$	$t \square [t_2,\square).$		
Copyright: © 2025 Continental	Publication			

R

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

Integrating the above inequality from t_2 to t , we have $t \Box 1 \Box K(t) \Box K(t)$
$c \square (1 \square \square)$ Letting $t \square \square$, we get $ds \square \square \square 2 \square \square \square \square r(1s) \square \square \square \square cK \square (1H(\square t 2 \square)) < \square$. $t \square$ This contradicts (3.13). Hence $D^\square \square V_H(t) \square$ o for $t \square [t_1, \square)$ holds. Define the function $W(t)$ by the generalized Riccati substitution $r(t)D^{\square \square}V^H(t)$ for $t \square [t_1, \square)$. (3.17) $W(t) = \square(t)$
$\overline{K_H(t)}$ Then we have $W(t) > 0$ for $t \square [t_1, \square)$. From (2.6),(2.7), (3.5)and (A_5) it follows that $D\square \square W(t) = \square(t) D\square \square \square r(t) D\square \square VH(t) \square \square \square \square \square \square(t) \square \square r(t) D\square \square VH(t)$
$\overline{K_{H}(t)} \square K_{H}(t) \square$ $\square \square \square (t) L \square k p_{j}(t) f_{j}(KH(t)) \square \square KH(t) D \square \square (t) \square \square (t) D \square \square KH(t) \square r(t) D \square \square VH(t)$
$\overline{KH}(t) \qquad \Box \Box \Box \qquad KH2(t) \qquad \Box \Box \Box$ $j=1$ $k \qquad \Box $
$ \overline{j=1} \Box(t) KH(t) $ Let $W(t) = W \sim (\Box), \Box(t) = \Box \sim (\Box), p_j(t) = \sim p_j(\Box), K_H(t) = K \sim H(\Box).$ Then $D^{\Box} \Box W(t) = W \sim \Box(\Box), D^{\Box} \Box(t) = \Box \sim \Box(\Box).$ Then the above inequality becomes $k \sim C \sim C \subset C \sim C \subset C \subset C \subset C \subset C \subset C \subset C$
$(\Box) (\Box)$ $\Box(1\Box\Box) \sim 1 {}^{\sim}r(\Box) \sim$ $Taking m = 2, X = {}^{\sim}(\Box)W(\Box), Y = 2 \Box(1\Box\Box)\Box \sim (\Box) \Box(\Box). \tag{3.20} \Box$

Using Lemma 2.2 and (3.20) in (3.19), we have	Journal of Statistical and Mathematical Sciences
$k \qquad {}^{\sim}r(\square)\square \square {}^{\sim}\square(\square)\square^2$	Vol. 13 No. 2 Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968
~ ~	j=1 4
$W\square(\square)$ \square $L\square(\square)\square$ \square_j ${}^{\sim}p_j(\square)$ \square 1 ${}^{\sim}$	
$\square(1\square\square)\square(\square)$	
Integrating both sides of the above inequality from \square $(s)\square 1 \sim r(s)\square \square \sim \square(\sim s)\square 2 \square \square ds \square W \sim (\square 1)\square (\square 1$	 -
\overline{j}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Taking the limit supremum of both sides of the above	
$\limsup \square \square \square \square L \square \sim (s) \square k \square \sim pj(s) \square 1 \sim r(s)$	$ \Box \Box \sim \Box (\sim s) \Box 2 \Box \Box ds < W \sim (\Box 1) < \Box,$
	
which contradicts (3.14) and completes the proof.	
Theorem: 3.3 Suppose that the conditions $(A_1) \square (A_7)$	
exists a positive function $\square \square C^{\square}((0,\square);R_{\square})$ and a fun such that	$C(D,R) \text{ where } D := \Box(t,s) : t \Box s \Box t_0 \Box$
1. $P(t,t) = 0$ for $t \square t_0$,	
2. $P(t,s) > 0$ for $(t,s) \square D_0$, where $D_0 := \square(t,s): t > s$	\square $t_0\square$ and P has a continuous and non-positive
$\Box P(t,s)$	
partial derivative $P_s\square(t,s) = $ on P_0 with respect to	o the second variable and satisfies $\Box s$
limsup 1 $\square P(\square,s)\square \square L\square \sim (s)\square R$ \square , (3.22)	$k \square \sim pj(s) \square 1 r \sim (s) \square \square \sim \square (\sim s) \square 2 \square \square ds =$
$\square\square\square P(\square,\square_1)\square \qquad \square\square \qquad j_{=1} \qquad 4 \square (1\square\square)\square(s)\square\square$	
where \Box_j are defined as in Theorem 3.2. Then all the so oscillatory in G . Proof. Suppose that $U(x,t)$ is H-nonogenerality we may assume that ${}^{u}_H(x,t)$ is an eventually positive solution of (3.5). Then proceeding as in the proof. $W \sim \Box(\Box) \Box \Box L \Box \sim (\Box) \Box k \Box_j \sim pj(\Box) \Box 1 r$	scillatory solution of (1.1) , (1.2) . Without loss of y positive solution. Then $V_H(t)$ is an eventually oof of Theorem 3.2, to get (3.21)
$j=1$ 4 $\square(1\square\square)\square(\square)$ multiplying the previous inequality by $P(\square,s)$ and integrated $P(\square,s)$	erating from \Box_1 to \Box for $\Box\Box\Box\Box$
$\Box P(\Box,s) \Box \Box L \Box \sim (s) \Box k \Box \sim pj(s) \Box 1 r \sim (s) \Box \Box \sim ps \Box (\Box,s) W \sim (s) ds j$	_
Copyright: © 2025 Continental Publication	

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

1					D	ooi:https://doi.org/10.5261/2enodo.15911966
~	$\Box \qquad \sim \\ \Box P(\Box, \Box_1) $	$W(\square_1)^{[}$	$\Box P_s\Box(\Box,s)$	W(s)ds < P([$\Box,\Box_{\scriptscriptstyle 1})V$	$\mathcal{N}(\square_1)$.
		, ,			, ,	
1 □ The (□1) •	erefore < □,	1	$\Box P(\Box,s)\Box\Box$	$\Box L\Box \sim (s)\Box k$	$\Box_j \sim pj$ ($(s)\Box$ 1 ~ $r(s)\Box\Box$ ~ $\Box(\sim s)\Box$ 2 $\Box\Box ds < W$ ~
	-					
		$j_{=1}$	4 □(1□□)□	$\square(s)\square\square$		
			o (3.22).The p nat the conditi	_		nold with (3.22) replaced by
1	<i>k</i> □ ~ □	$p_j(s)$	$ds = \square$,	limsup	$P(\Box,s)$	$SL\square(s)$ \square_j
1 	$P(\Box,\Box 1)\Box$	<i>j</i> =1				
1	$r(s)\square\square^{\sim}\square^{\sim}$ limsup		□,s) ~	$ds < \square$,		
	$\overline{P(\Box},\Box_1)_{\Box}$	□(1 □	$]\Box)\Box(s)$			
_	every solution	U(x,t)	of (1.1),(1.2) i	is H-oscillator	y in G.	. Next, we consider the case
□ 1	\Box ds < \Box	□,	(3.23)			
Theorem function	rem: 3.4 Su on $\square\square C^{\square}((0))$, where $\max \square \square_3, \square_4$	ppose to, \square); R	that the condi	tions $(^{A}_{1}) \square (^{A}_{1})$ (3.14) holds.	₇) and (Futherr	the following result. (3.23) hold and that there exists a positive more, assume that for every constant \Box_{7}
]□ j=1 □	T				

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https:/	/doi.org/10.5282	1/zenodo.1592	11968

DOI:https://doi.org/10.5281/zenodo.15911968 Then every solution of $V_H(\square)$ of (3.5) is H-oscillatory or satisfies $\lim \square \square \square \square \square \square \square \cup V_H(s) ds = 0$. Proof.
Suppose
o that $U(x,t)$ is H-nonoscillatory solution of (1.1),(1.2). Without loss of generality we may assume that $u_H(x,t)$ is an eventually positive solution . Then $V_H(t)$ is an eventually positive solution of (3.5). Then proceeding as in the proof Theorem 3.2, there are two cases for the sign of $D^{\square} \cup V_H(t)$. The proof when $D^{\square} \cup V_H(t)$ is eventually positive is similar to that of Theorem 3.2 and hence is omitted. Next, assume
that $D^{\square} \square V_H(t)$ is eventually negative. Then there exists
$t_3 \square t_2$ such that $D^{\square} \square V_H(t) < 0$ for $t \square t_3$. From (2.6), we get
$K\square_H(t)=\square(1\square\square)D^\square\square V_H(t)<\mathrm{o}, \qquad for \qquad t\square t_3.$
~ ~ ~ ~
Then $K_H \square (\square) = \square (1 \square \square) V_H \square (\square) < 0$ for $\square \square \square_3$. Thus we get $\lim K_H (\square) := M_1 \square$ o and $K_H (\square) \square M_1$. We claim that
$M_1 = 0$. Assume not, that is, $M_1 > 0$ then from (A_5) , we get k
$D^{\square}_{\square} \square r(t) D^{\square}_{\square} V_{H}(t) \square \square \square L \square p_{j}(t) f_{j} \square K_{H}(t) \square$
j=1
k
$\square \square LM_1 \square \square_j p_j(t), for t \square [t_3, \square).$
j=1
Let $r(t) = {}^{\sim}r(\square), V_H(t) = V_{H}(\square), p_j(t) = {}^{\sim}p_j(\square)$.
Then $D^{\square} \square V_H(t) = V^{\sim}_H \square \ (\square), D^{\square} \square \square r(t) D^{\square} \square V_H(t) \square = \square^{\sim} r(\square) V^{\sim}_H \square \ (\square) \square^{\square}$.
Using these values, the above inequality becomes
$\Box r(\Box)V_H\Box (\Box)\Box \Box \Box LM_1\Box \Box f_j p_j(\Box)$, for $\Box \Box [\Box_3,\Box)$. Integrating both sides of the last inequality from \Box_3 to \Box , we have
j=1
$\square\square\square \qquad \sim \qquad \square\square 1 \square k \square\square \sim pj(s)ds$
$\sim r(s)VH\square(s) ds \square \square LM\square j$
\Box_3 $j=1$ \Box_3
k \Box k \Box
$^{\sim}r\left(\Box\right)V^{\sim}{}_{H}\Box\left(\Box\right)\Box r\left(\Box_{3}\right)V^{\sim}{}_{H}\Box\left(\Box_{3}\right)\Box LM_{1}\Box\Box_{j}{}_{\Box}{}^{\sim}p_{j}(s)ds\Box\Box k_{1}\Box LM_{1}\Box\Box_{j}{}_{\Box}{}^{\sim}p_{j}(s)ds$
$j=1 \square 3$ $j=1 \square 3$
k \square
$k \qquad \Box \qquad K \sim \Box \Box \ LM_1 \Box \Box j \ \Box \sim p \ j \ (s) \ ds$
$\sim p(s)ds$.
$\square \square LM_1 \square \square j \square j$ Hence from (2.6), we get $H(\square) = V \sim H \square (\square) \square j = 1 \sim r(\square) \square$.
$\overline{j=1} \square 3 \square (1 \square \square)$
$k \square$
$\Box\Box_{j\Box^{\sim}pj}(s)ds$

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99

761. ان انتهار کی ا 1801:https://doi.org/10.5281/zenodo.1591

	DOI:https://doi.org/10.5281/zenodo.15911968
~ Intog	$\Box j=1$ $\Box 3$ rating the last inequality from \Box_4 to \Box , we get $K_H(\Box)$ \Box $K_H(\Box_4)$ \Box
du.	rating the last inequality from \sqcup_4 to \sqcup , we get $K_H(\sqcup) \sqcup K_H(\sqcup_4) \sqcup \sqcup (1 \sqcup \sqcup) LM_1 \sqcup 4 \sim_{r(u)}$
uu.	
	~
Lettin $M_1 = 0$,	ig $\square \square \square$, from (3.24), we get $\lim K_H(\square) = \square \square$. This contradicts $K_H(\square) > 0$. Therefore we have
~	\square \square \square ~ is, $\lim K_H(\square) = 0$. That is, \lim \square $(\square\square s)$ $V_H(s)ds = 0$. Hence the proof.
4	H-Oscillation of the problem (1.1),(1.3)
	s section we establish sufficient conditions for the oscillation of all solutions of (1.1),(1.3). For this ed the following: The smallest eigen value \Box_0 of the Dirichlet problem. $\Box\Box(x)\Box\Box\Box(x) = 0$
pogitiv	in \square , $\square(x) = 0$ on $\square\square$, is positive and the corresponding eigen function $\square(x)$ is we in \square .
-	rem: 4.1 Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of $U(x,t)$ of
	nd (1.3) H-oscillates in G . Proof. Suppose that $U(x,t)$ is a H-nonoscillatory solution of (1.1) and
	Without loss of generality we may assume that $u_H(x,t) > 0$, in $\Box\Box[t_0,\Box]$ for some $t_0 > 0$.
_	olying both sides of the Equation (3.1) by $\square(x) > 0$ and then integrating with respect to x over \square .
m	
we obt (t)	$ \begin{array}{c} \text{rain for } t \ \Box \ ^t_1, \ \Box \ D^{\Box}_{\Box} \ \Box r(t) D^{\Box}_{\Box} ^u_H(x,t) \Box \Box (x) dx \ \Box \ a(t) \Box \ \Box ^u_H(x,t) \Box (x) dx \ \Box \ \Box ^a_i(t) \Box \ \Box ^u_H(x,\Box_i) \\ \text{fix}) dx \end{array} $
<i>i</i> =1 □	
k	t \square \square
	$\Box \Box p_j(t) \Box f_j \Box \Box (t \Box s) u_H(x, \Box_j(s)) ds \Box u_H(x, \Box_j(t) \Box (x) dx \Box \Box f_H(x, t) \Box (x) dx. \tag{4.1}$
j=1	
Using	Green's formula and boundary condition (1.3) \square it follows that
	$\square \ \square u_H(x,t)\square(x)dx = \square \ u_H(x,t)\square\square(x)dx = \square \square_0 \square \ u_H(x,t)\square(x)dx \square \ 0, \ t \square \ t_1 \ (4.2)$
and	
	$\square \sqcup u_H(x,\square_i(t))\square(x)dx = \square \sqcup u_H(x,\square_i(t))\square\square(x)dx = \square \sqcup_0 \square \sqcup u_H(x,\square_i(t))\square(x)dx \square o,$
	$t \square t_1, i = 1, 2, \dots m. (4.3)$
By usi	$t \square t_1, i = 1, 2,m.$ (4.3) ing and Jensen's inequality, (A_6) and (A_7) we get $\square f_j \square \square \square^t (t \square s)^{\square \square u_H}(x, \square_j(s)) ds \square \square$
=	$ f_j(t) \square (x) dx$

	Vol. 13 No. 2 Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968 \square
$\Box L \Box (x) dx f_j \Box \qquad (t \Box s)$	$\Box(x)dx(\Box\Box(x)dx)^{\Box_1}\Box\Box ds\Box\Box$. Set
	$\Box\Box(x)dx\Box\Box, t\Box t_1. (4.4)$ $u_H(x,\Box_j(s))ds\Box u_H(x,\Box_j(t))\Box(x)dx\Box L\Box\Box(x)dxf_j(K_H(t)), t\Box^{t_1},$
By (A_5) , $\square f_H(x,t)\square(x)dx \square$ o.	(4.6)
· · · · · · · · · · · · · · · · · · ·	rields $D^{\square}_{\square} \square r(t)D^{\square}_{\square}V_{H}(t)\square \square L\square p_{j}(t)f_{j}(K_{H}(t))\square$ o, (4.7) similar to that of Theorems 3.2 and 3.3, and hence the details are
(1.1) and (1.3) is H-oscillatory in ${\cal G}$.7) has no eventually positive solutions, then every solution $U(x,t)$ of . of Corollary 3.1 hold; then every solution $U(x,t)$ of (1.1) and (1.3) is
Theorem: 4.2 Let the condition oscillatory □	ns of Theorem 3.4 hold; Then every solution $V_H(\Box)$ of (4.7) is H-
\square ~ or satisfies $\lim \square \square \square \square s \square V$ are similar to that of in $\square \square \square$	$V_H(s)ds = 0$. The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2
O Section 3 and hence the details are 5 Examples	omitted.
-	le to illustrate the results established in Sections 3. Example 1. ial differential equation
\square \square \square 4 \square \square \square \square \square	$ \begin{vmatrix} $
	$U^{\square}\square x,s \square \square^{\square}\square ds \square \square \square U_{\square}\square^{\square}x,t \square \square_2 \square^{\square}\square \square F(x,t), (5.1)$
Copyright: © 2025 Continental Publicatio	n

Journal of Statistical and Mathematical Sciences Vol. 13 No. 2 | Imp. Factor: 8.99

voi. 13 No. 2 | 1111p. Factor: 6.99 DOI:https://doi.org/10.5281/zenodo.15911968

	DOI:https://doi.org/10.5281/zenodo.15911968
$\sqrt{3}$ $_{0}\square$ $_{2}\square$ $_{\square}$	1
$(x,t)\square G$, where $G=(0,\square)\square(0,\square)\square(0,\square)$, with the bound $G=(0,1)\square(0,1)\square(0,\square)$, with the bound $G=(0,1)\square(0,1)\square(0,\square)$, where $G=(0,1)\square(0,\square)$	-
$\square\square\square u_1(0,t)\square\square\square = U(\square,t) = \square\square\square uu_{12}((\square\square,t))\square$ (5.2)	$\square\square\square = \square\square\square\square oo \square \square\square, \qquad t\square o.$
U(0,t) =	
$\Box u_{2}, (0,t) \Box$ \Box	
$\frac{2}{3}$ $\frac{1}{2}$ $\frac{2}{3}$ 1 2	
	(t)
Here $\Box = 1$, $m = 1, k = 1, n = 2, r(t) = t$, $p_1(x,t) = 1$, $a(t) = t$, $a(t) = t$, $a(t) = 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 ,	
_	
$\overline{\sqrt{3}}$ 4 $\Box_1\Box$ \Box	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$F(x,t) = \begin{bmatrix} 5 & & \\ & 1 \end{bmatrix}$	
$\frac{3\sqrt{3}}{3} = \frac{3\sqrt{3}}{3}$	
	1
and $f_1(u) = u$. It is easy to see that $p_1(t) = \int_{x_0[0,D]} \frac{1}{\sqrt{3}} dt$	$\Box \frac{1}{\sqrt{3}} \qquad min_x \Box \Box p_1(x,t) = min \qquad .$
$\Box_1\Box$ Let $H = e_1 = \Box_{\Box_0}\Box_{\Box\Box}$, we observe that f_{e_1} $\frac{2\Box}{\sqrt{3}(\Box(\frac{1}{3}))^2}t^{\frac{1}{3}}\sin x$	$\cos t$ and $(x,t) =$
Let $H = e_1 = \square \square_0 \square \square \square$, we observe that $f_{e_1} = G_1 \square \square \square$	(x,t) =
$(x,t)dx = \frac{4 \Box \frac{1}{3}}{\sqrt{3}(\Box(\frac{1}{2}))^2} \Box fet cost$	
\square o, \square t \square .	
2 2	
Take [1 [1 [(a)] a H is electrical divisors (4) [7(4) and (a ta) hald Therefore
Take $\square_1 = 1, \square_1 = 1, \square(s) = s$. It is clear that conditions (A_1)	$\mathbb{I}(A_7)$ and (3.13) noid. Therefore,
$\Box\Box\Box\Box L \sim (\sim m_1(s)\Box \sim r \longrightarrow (s)\Box\Box \sim \Box (s)\Box\Box (s)\Box\Box \sim \Box (s)\Box\Box (s)\Box (s)$	$s \sim 1 \cap 2 \cap 1 \cap ds = 1 \cap 1$
$\square\square\square L \sim (\sim p1(s)\square \sim r \xrightarrow{\sqrt{3}} \square \xrightarrow{2 \stackrel{1}{3}} (s)\square \square \sim \square (s)$ $as \square\square\square.\square s)\square 1$, , <u></u>
\Box 4 \Box (1 \Box 0) \Box (s) \Box \Box	
\Box 3 \Box	

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15911968

Thus all the conditions of Theorem 3.2 are satisfied.	, it follows	O,	•	
$(5.1),(5.2)$ is e_1 -				

 $\Box \sin x \sin t \Box$

oscillatory in G. Infact $U(x,t) = |\Box \Box \Box \Box$, is one such solution of the problem (5.1) and (5.2). We note that the

 \square o \square above solution U(x,t) is not e_2 \square oscillatory in G, where e_2 = \square \square \square \square \square .

Acknowledgement: The authors thank Prof.E. Thandapani for his support to complete the paper. References

- S. Abbas, M. Benchohra and J.J. Nieto, Global Attractivity of Solutions for Nonlinear Fractional Order RiemannLiouville Volterra-Stieltjes Partial Integral Equations, Electronic Journal of Qualitative Theory of Differential Equations, 81 (2012) 1-15.
- D. Baleanu, K. Diethelm, E.Scalas and J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 3 (2012) 473-485.
- D. Baleanu, OG. Mustafa and D.O' Regan, A Kamenev Oscillation Result for a Linear (1 \subseteq 1)-order Fractional Differential Equations, Applied Mathematics and Computation, 259 (2015) 374-378.
- Da-Xue Chen, Oscillation Criteria of Fractional Differential equations, Advances in Difference Equation, 33 (2012) 118.
- Da-Xue Chen, Oscillatory Behavior of a Class of Fractional Differential Equations with Damping, UPB Scientific Bulletin, Series A, 75 (2013) 107-118.
- Ju.I. Domslak, On the Oscillation of Solutions of Vector Differential Equations, Soviet Mathematics Doklady, 11 (1970) 839-841.
- Yu.I. Domshlak, Oscillatory Properties of Solutions of Vector Differential Equations Differential Equations, 7 (1971) 728-734.
- Emil Minchev , Norio Yoshida, Oscillations of Solutions of Vector Differential Equations of Parabolic Type with Functional Arguments, Journal of Computational and Applied Mathematics, 151 (2003) 107-117.
- Zaffer, On the Oscillation of Fractional Differential S.R. Grace, R.P. Agarwal, P.J.Y. Wong, A. Equations, Fractional Calculus and Applied Analaysis 15 (2012) 222-231.
- G.H. Hardy, J.E. Littlewood and G.Polya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, Mass, USA, (1988).
- A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, The Netherlands, 204 (2006).

Vol. 13 No. 2 | Imp. Factor: 8.99

DOI:https://doi.org/10.5281/zenodo.15911968

- J.T. Machado, V. Kiryakova and F. Mainardi, Recent History of Fractional Calculus, Communications in Nonlinear Science and Numerical Simulation, **16** (2011) 1140-1153.
- F. Mainardi, Fractional Calculus and Waves in Linear Viscoelascity, Imperial College, Press, London, UK, (2010).
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, (1993).
- E.S. Noussair, C.A. Swanson, Oscillation of Nonlinear Vector differential Equations, Annali di Matematica Pura ed Applicata, **109** (1976) 305-315.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, (1999).
- P. Prakash, S. Harikrishnan, Oscillation of Solutions of Impulsive Vector Hyperbolic Differintegral Equations with Delays, Applicable Analysis **91** (2012) 459-473.
- P. Prakash, S. Harikrishnan, J.J. Nieto and J.H. Kim, Oscillation of a Time Fractional Partial Differential Equation, Electronic Journal of Qualitative Theory of Differential Equation, 15 (2014) 1-10.
- S. Harikrishnan, P. Prakash and J. J. Nieto, Forced Oscillation of Solutions of a Nonlinear Fractional Partial Differential Equation, Applied Mathematics and Computation, **254** (2015) 14-19.
- V. Sadhasivam and J. Kavitha, Forced Oscillation for a Class of Fractional Parabolic Partial Differential Equation, Journal of Advances in Mathematics, **11** (2015) 5369-5381.
- V. Sadhasivam and J. Kavitha, Interval Oscillation Criteria for Fractional Partial Differential Equations With Damping Term, Applied Mathematics, Scientific Research publishing, 7 (2016) 272-291.
- V. Sadhasivam and J. Kavitha, Forced Oscillation of Order Partial Differential Equations with Damping and Functional Arguments, International Journal of Pure and Applied Mathematics, **106** (2016) 89-107.
- Vasily E. Tarasov, Fractional Dynamics, Higher education press, Beijing and Springer-Verlag Berlin Heidalberg, 2010.
- Y. Wang, Z. Han and S. Sun, Comment on 'On the Oscillation of Fractional-order Delay Differential Equations with Constant Coefficients', Communication in Nonlinear Science, **19** (2014) 3988-3993.
- Wei Nian Li, Maoan Han and Fan Wei Meng, H-Oscillation of Solutions of Certain Vector Hyperbolic Differintegral Equations with Deviating Arguments, Applied Mathematics and Computation, **158** (2004) 637-653.

Vol. 13 No. 2 | Imp. Factor: 8.99 DOI:https://doi.org/10.5281/zenodo.15911968

- Wei Nian Li and Weihong Sheng, Oscillation Properties for Solutions of a Kind of Partial Fractional Differential Equations with Damping Term, Journal of Nonlinear Science and Applications, 9 (2016) 1600-1608.
- B. Zheng, Oscillation for a Class of Nonlinear Fractional Differential Equations with Damping Term, Journal of Advanced Mathematical Studies **6** (2013) 107-115.
- Zhenlai Han, Yige Zhao, Ying Sun and Chao Zhang, Oscillation for a Class of Fractional Differential Equation, Discrete Dynamics in Nature and Society, (2013) 1-6.
- Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, (2014).