Journal of Artificial Intelligence in Medicine
ISSN 3064-7851

Volume 11 Issue 1

January - March 2023

Impact Factor: 6.61

—~ CONTINTAL — Enquiry: contact@continentalpub.online

Published by Continental Publication | https://continentalpub.online /index.php/Medial-Al

Publications

METHODS FOR INTEGRATING FUZZY AND CRISP INPUTS IN
REGRESSION ANALYSIS

Maha Nabil Abdelrahman

Associate Professor of Statistics, Head of the Department of Statistics, Mathematics, and Insurance,
Faculty of Commerce, Damanhur University, Egypt

Introduction

Abstract: Linear regression models play a crucial role in . .
Linear regression models are used to

capturing the linear relationships between response and . . .
: . . e ; model the functional relationship
predictor variables, relying on specific assumptions. These
assumptions encompass the availability of sufficient data, between the response and the
the validity of the linear relationship, the exactness of the predictors linearly. This relationship is
connection, and the presence of precise data for both used for describing and estimating the
variables and coefficients. However, when these assumptions response variable from predictor
cannot be met, fuzzy regression models provide a practical variables. Some important assumptions
and flexible alternative. The concept of fuzzy linear are needed to build a relationship, such
regression was initially introduced by Tanqka etal in1 ?82 as existing enough data, the validity of
and has since 'been extended and refined by various the linear assumption, the exactness of
researchers. This paper explores the realm of fuzzy the relationship, and the existence of a

regression modeling, tracing its evolution and development b data f bl d ffici
through contributions from authors like Tanaka, Lee, crisp data tor variables and coetticients.

Diamond, D’Urso, Yang, Gonzalez-Rodriguez, Choi, Yoon, and The fuzzy regression model is a
Massari. Fuzzy regression offers a robust approach to Ppractical alternative if the linear
modeling relationships when traditional linear regression regression model does not fulfill the
assumptions do not hold, making it a valuable tool in various above assumptions. A fuzzy linear
real-world scenarios. regression model first introduced by
Tanaka et al. (1982). Their approach
handled after that by many authors,
such as Tanaka and Lee (1988); Tanaka
and Watada (1988); Tanaka et al. (1989); Diamond (1988, 1990, 1992); Diamond and Koener (1997);
D’Urso and Gastaldi (2000); Yang and Lin (2002); D’Urso (2003); Gonzalez-Rodriguez et al. (2009);
Choi and Yoon (2010); Yoon and Choi (2009, 2013); D’Urso and Massari (2013).

Fuzzy regression models have been treated from different points of view depending upon the type of
input and output data. There are three different kinds of models:

Keywords: Linear regression, fuzzy regression, fuzzy
modeling, data relationships, modeling assumptions.
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. Crisp input and fuzzy output with fuzzy coefficients. [1 Fuzzy input and fuzzy output with crisp
coefficients.
. Fuzzy input and fuzzy output with fuzzy coefficients.

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond
(1988, 1990, 1992)).

The objective of this paper is to extend the simple linear regression model to the multiple one and
estimate it with the least squares approach. This extension is based on adding both fuzzy and crisp
predictors to the linear regression model, and the resulting model is called the mixed fuzzy crisp (MFC).
Our extended model will be evaluated using the extended squared distance of Diamond (1988).
Generated data are applied to compare the estimation results of the proposed MFC model with the
usual multiple fuzzy MF regression model.

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random
variables (FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy
linear regression models will be considered. The proposed mixed fuzzy and crisp (MFC) linear
regression model will be introduced in section (4). Section (5) considers the numerical applications
using generated and real data examples. The concluding remarks will be discussed in section (6).
Mathematical Preliminaries

Some definitions and notes will be presented in this section for the requirements of this work.

2.1 Sets Representation of Fuzzy Numbers

Let K. [JR P [Idenotes the class of all non-empty compact intervals of Rrand let Fc (1R p [1 denotes the
class of all fuzzy numbers of RP . Then, Fc LIR P [] will be defined as follows:

Fc LJRe IO OA:Re (100,10 AoKe JRe OO0 Ho,1 000, (1)
Where Ao is the a-cut set of A if [1[1[Jo, 10, and Ao s called the support of A. (Zadeh, 1975).

For a given A, BFc IR, and bR, the followings hold:

. The sum of A and B is called the Minkowski sum, defined as: S [1 ALIBLJF. LJR[]. (Zadeh, 1975).
. The scalar product of b and the set A is defined as: PLIbJAOF:. IR . (Zadeh, 1975).

. A fuzzy number DUIF. [IRO is called the Hukuhara difference of A and B defined as: DLJALn
B, it is shown that the Hukuhara difference is the inverse operation of addition [, where ALIBLID
.(Zadeh,

1975).

2.2 Left and Right (L-R) Representation of Fuzzy Numbers

Let A€T(R) is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of Fc(R). A trapezoidal fuzzy
number A is defined as A=Tra(A1,Au,Av,Ar), where AIER and A:€R are the left and right limits of the
trapezoidal fuzzy number A, respectively. Also Au€R and AveR are the left and right middle points of A,
respectively, as shown in Figure (1). When

Au = Ay =Am, a fuzzy number A will be a triangular, i.e., A=Tri(A1,Am,Ar), as shown in Figure (2)

If Ai=a, Au=b, Av=c,and A:=d, a stylized representation of a trapezoidal fuzzy number A can be
represented in the following L-R form:

. A trapezoidal fuzzy number A is specified by a shape function with the following membership
(Figure (1)):
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Figure (1): Trapezoidal Fuzzy Number.
. When c=b, a triangular fuzzy number A is specified by a shape function with the following
membership (Figure
(2)):

0 x<a Y

i, (x) =11, X=b

5’ b<xsc T3 A .
0, x2c.
Figure (2): Triangular Fuzzy Number
2.3 Metrics in Fuzzy Numbers Space
To measure the distance between any two fuzzy numbers A, and B in Fc [JR[], an extended version of
the Euclidean (L-) distance (de LJA,BL]) is defined by:
de2JA,BOO0OOALOOOOBLOOOOdO OO DA OO OOBvO OO O=d O,
4)
where AL L1 and Av LJOJ [ are the lower and upper [l-cuts of a fuzzy number A. (Grzegorzewski,
1998).
Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as:
d20A,BO0 Opo,1i00midJAcO00midOBoO02dO 0 Ooo,1o OsprdAo OO sprdBo O 02d O,
(5)
AoU O AgL. AgU O AgL
where mid[JAo[] denotes the midpoint of Ao, and spr[JAoJ[] denotes the spread (or radius)
2 2 of Ao, L1005 o,100. AgVand Aot denote the upper bound and lower bound of A, respectively.
The Hausdroff dH [JA,BL] metric for A, BLIFc IR is given by:
du CJA,BOIL] max[[]inf AI:linﬂB , supAllsupB L1, (o)
where infA is the infimum value of A, and | supA is the supremum value of A.
The d p LJA,BU metric for A, BL1Fc IR, and 10 p[1[10 is given by:
1 /
U1 p 1_| pld pd;rElA4{3D Ooinf AQinf B O supAllsupB O, (7). Q2 2
O
where infA and supA are the infimum and supremum values of A, respectively. (See Vitale, 1985).
The distance between fuzzy numbers can be defined as the distance between their membership
functions. The distance d , [JA,B[1between the two fuzzy numbers A,B is given by:
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1 /

dp OA,BOIO DE]DADIEIdemDp, for 10 pOI0d, (8)
X

and |

d » LJA,BLIL] essential sup[1alIx[10] DB||:|XD for pId, 9)
xX

where X[1[ is a Lebesgue measurable set, m is a Lebesgue measure on X. (See Klir and Yuan, 1995).
The membership functions of two fuzzy numbers are the same if the distance between them is zero, i.e.,
dp, UABOO o OAOxOI O O OxO OxOOX OEO,

If the two functions d:and d- defined such that: diand d-: X r (X ¢ [JRE,

where Xr is a fuzzy set and X={x1,Xs,...,Xn} is a fuzzy random variable (FRV), and A,BLJX r.

Then:
n

| d,0A,BO0O00.Ox 000 Oxi O, (10)
il

and

n

d. OJABOOOOOx Ox OO0 Oxi (102, (11)

i1

Are called fuzzy distances. (Rudin, 1984).

The FRVs used in this paper are considered as functions from a probability space (Q,A,P) into the
metric

space (Fc(R),ds), where 6>0. The sample mean X » and sample variance [1o2n of the FRV X are defined

by:

1 J—

X,O0OX:OX.O...0X a0, (12) n

and B

OO2n O nilr1 d g2 00X, X o O (13)

If X and Y are two FRVs , then the Bertoluzza covariance between them is defined as:

covo X, YU covmid LIX, YOI D eovspr 1X, YL, (14)

1n

covmid X,YOOOpo,1o0 » Fild1 midOX; OoOmidO0OY: OoOdO0O00zo0,10 midOOX »
Oo0midO0Y. OoOdO (15)

1n
covmid UX, YOO Opo,1o oHild1 midOX i Oo0Omid0OY: OoOdO000oo,10 midOX »
UoOmidO0OY. OoOdO
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(3) Fuzzy Linear Regression Models

3.1 The Standard Linear Regression Models

Consider the following standard simple linear regression model:

Yi 00, O0O.X 3 00, i=1,2,...,n, (16)

where o, and[]: are unknown parameters, X is the predictor, Y is the response variable and [lis the
error term of the model, with EL10\ X1 o and finite variance. The least squares estimators of [lo,
and[J.are obtained by minimizing the sum of squared error criterion, Q, as follows:

n

Q O argmin [107Y; 0o OO, Xy [2. (17)

Llo , Ly i1

The resulting estimators denoted by bo, and b: are as follows:

n

U 0Oxiyi OO nsy

b, Oiby, andbo [J (b (18)

Oxi2 [Cnx2

il

The multiple linear regression model is one:

Y OXOOO, (19)

where Y is an (nx1) column vector of the dependent variable, X is an (nxp) matrix of predictors, 3 is a
(px1) vector of unknown parameters to be estimated, and ¢ is an (nx1) vector of errors distributed as
N(0,02In). The least squares estimator of  , denoted by b is given by:

b O OXOXOPXOY, (20)
which is obtained by minimizing the corresponding criterion, Q as:
Q U argmin]Y O XOUUY O XOIO. (21)
O

3.2 Simple Fuzzy Linear Regression Models
In the case of using fuzzy data, fuzzy regression models will be used to estimate the unknown
parameters. Consider the following fuzzy simple linear regression models:

~yi OO OO~x OO~ (22)
~yi 0~ O0O~xi LI0~,  (23) ~yi U0~ O0O~xi LOO~,  (24)
~ ~ ~y is a fuzzy where [Jo ,and[]1 , are crisp parameters, x is a crisp variable,

[1o,and[1are fuzzy parameters,
response variable, ~ x is a fuzzy predictor. As a lack of linearity of Fc LIR p [, U~ is reduced to a non-
FRV. (See Gonzalez-Rodriguez et al. (2009)).

The regression functions of models (22), (23), and (24) will be approximated as follows: ~

~ ~

E(Y\X) OO, 00X, (25)

~ ~ ~
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E(Y\X) OO 00X, (26)

~ ~ ~ ~ o~

E(Y\X) OO0, 00:X, (27)

The least squares estimators of the parameters in models (22):(24) are derived using using triangular
and trapezoidal fuzzy numbers. The derivation is approximated by optimizing the least squares
criterion. In this work, the least squares optimization criterion which is an extension version of that
introduced by Diamond (1988) will be used.

3.3 The least Squares Approach for of the Simple Fuzzy Regression Models Using
Triangular Fuzzy Numbers

The least squares estimators of the parameters in model (22) are obtained by minimizing the least
squares criterion as follows:

n

QUO,,0, OO argmin [1d 2 B~yi, o L0y ~xi O (28)

o,y i1

Diamond (1988) showed that there are two cases arising when [1 [ 0 or L1 L1[Jo . Using the triangular
1 1

fuzzy number, the objective function in (28), when [1 [ o, will be as follows:

1

n

QUUOOo,1 OO argmin Ud 2 O~yi ,[o O O1~xi O
DO,DI i1

(29) n

L argmin g Cya L 0o O Dyxa D2 O Dyim 0 0o O 0 axim 2 H Oyir 010 o 00 yxie 12 L
DO,DI i1

By differentiating of Eq. (29) with respect to the parameters Ui and [lo, and equating the equations by

Zero:
QU Mo, 1000 2xi1l Un Oyil o OO 1xill OO 2xiim On Oyim OO o O Oixiim OO 2xitr
Un Oyir O0o O0wx ir L0 o

OO1 101 101 10

QU o, OO 20n Oyil 0o O0xi1l OO 200n Oyim o O01xiim OO 200n Olyir
O0o O0Owxiir O O o

O0o i1 101 102

The least squares estimators, b:" and boH of H;and Lo respectively, are obtained as follows:
n
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U Oxil yil O xim yim O xir yir 0 3nsy
b1 Oi1 n , (30)

L Oxil2 O xime O xir2 [1003nx2
i1
bol O 5= Ob:Ox, (31)
where, yil, yim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, Xil, Xim
, and
n
xir are the left, middle, and right value of xi , respectively, for i=1,2,...,n. ¥ O Oya O yim O yir L1 /30,
and
ild1 n 0 O 0xq O xim O xir L1/30.
i1
For the second case, where [1 [1[]o, the objective function of (28) will be as follows:
1
n
QUOOOo,0:100 argmin (Od 200~yi,do O 1~xi O
o,y i1
, (32)n
L argmin gL Cya L 0o O Dyxir D2 O Dyim 0 0o O D axim 02 O Oyie 0100 O 0 yxi L2 L
o,y i1

and differentiating of Eq. (32), the least squares estimators, b:J and bo" of U;and [lo respectively, are
obtained as follows:

n

L 0Oxil yil O xim yim O xir yir O 3nsy

b1 Oild1 n , (33)

OOxil2 OO xim2 O xir2 C0003nx2
ill1
boU DyDb1D§€ (34)

Diamond (1988 [5], 1990[6]) showed that for every fuzzy nondegenerate data set that b;= [1 b;2 , and
the least squares estimators will be unique if the fuzzy nondegenerate data set is tight.

Definition (3.1)

Consider the fuzzy data sets ~ yi L1Uyil, yim, yir U, and ~x; 01 Uxi, Xim , xir L, for i=1,2,...,n, the set is
said to be nondegenerated, if not all observations in a set are made at the same datum.
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Definition (3.2)

Consider the fuzzy data sets ~ yi [1Uyi, yim, yir 1, and ~xi O Oxi, Xim, xir L1, for i=1,2,...,n, the set is
said to be tight if either b1[] [1 0 or b1lJ U o . If b1l [ o the data set is said to be tight positive, and
if b1[] [ o the data set is said to be tight negative. (Diamond (1988[5]).

The least squares estimators of the parameters in model (23) are obtained by minimizing the squared
distances between the regression model and the regression function as follows:

QUO~o, 0~ OO0 argmin [In d 2 O~yi,[~o0 O0O~1xi O (35)

Oo , Ly i1
where [o U Cl0o1,Hom,Hor 4 and [ O C10 4, Cym, Csr [ are two triangular fuzzy numbers.

Eq. (35) can be written as:

QUo,1 U argminlld

O~ ~0O n 2 (~yi ,d~o0 O0O~1xi OO argmin [0 Cyil 0ol O01] xi CO2 O0yim OC0om
O0wmxi O2 OOyir OOor OO1rxi O2 O (36)

Co,[1 ild1  Oo,01

By differentiating of Eq. (36) with respect to the parameters U1,2m, Ur and o1, Llom, Lor, the least
1 1 1

squares estimators, b1l , bim , bir and bol , bom , bor are obtained when

xi = 0 as follows:

n n n

O0xiya O0nsan O 0Oxiyim O Onseym O O xi yir U Dl sy

bil Jid1n ,bim Oi01n,bir Oi0in, O0xeO00nx O0x20O0nxe (37

O Oxi20 Cnx2 iy i01 i1

bol Oyl Obilx, bol Oyl Obilx ,.bor U yr Ub1r x. (38)

when xi < 0, least squares estimators, bil , bim , bir and bol , bom , bor are obtained as follows:

n n n

O0xi yir 0 ner O 0xi yim O O nseym O O xiyin L Dnsen

b1l OO il1n ,bim [0ild1n ,bir [ildin , (37)

O Oxi200 Cnx2 O Oxi20 Cnx2 O Ox20 Cnx

ild1 i1 il

bol O ¥l Ldbirx, bom [ ym Clbim * , bor O yr (38)
Clbil x-.
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The least squares estimators of the parameters in model (24) are obtained by minimizing the squared
distances between the regression model and the regression function as follows:

O~ ~0O n 2O~yi, 0~ O0~xi O (39)

Q Uo,, 0 argmin [1d

Do,Dl i1

where O~o O OO0, m , ~ ~x i 1 Oxi1, Xim, Xir [] are triangular fuzzy numbers, and o  [or [

0o, DDll,Dnn,Du O , and

LJ~o OJO~1 ~x i is approximately fuzzy number. (See Arabpour and Tata).

Eq. (39) can be written as:

QUUO~,0~0O0argminCdnd 200~yi,[0~o0 OO~1xi OO argmin [ Cyil 0ol Ol 01l xil C2 O 0yim
U0Oom O0Ommxim O2 O 0yir O0or O O1r xir L2 [0 (40)

0 1

Clo,[1 il Oo,01

By differentiating of Eq. (40) with respect to the parameters Y1l ,Him , Hir and Uot, Clom, Clor, the least
~xi's and (]~ ; are positive fuzzy squares estimators, b1, bim, birand bot, bom, bor are obtained as follows
when numbers.

n n n
U Oxil yil O Cnxl yl O0Oxil yim O0Onxm ym O Oxir yir OO nxr yr
bil dild1n ,bim Oild1n ,bir Jild1n, (41)
OOxil2O0Onxl 2 O0Oxim2 CJC0nxma2 O Oxir2 O 0nxr 2

(I T | G R VI '

bol U ¥l Ubirx1, bom [ ym [Clbim xm , bor [ sr [bi1l xr . (42)
The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be
easily found.

3.4 Multivariate Fuzzy Linear Regression Models

3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp
Parameters

Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression
model may be formalized as follows:
~}7i|:||:]0 U ~xi 0 2~xi2 ... Dp~Xip|:||:|~i. (43)
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Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows:

~ ~ ", (44)
Y O XOOO ~ ~
where, Y is an (nx1) vector , X is an (nxp) matrix of p fuzzy predictors, and [ is a (px1) vector of
unknown p crisp parameters. As a result of the lack of linearity of Fc 1R P [, U~ is reduced to a non-
FRV [I. (See
Gonzalez-Rodriguez et al. (2009)).

~ ~

Y, X, O, and [are formalized in matrix form as follows:
~Y1|:| O
O
Y~ 0O O0O~y2000, X~
o
OoOooOo O
U~yoOJO OO0
O
~x11 ~x12 L ~x10p0]
|5 O
Od~10
~X21 ~X22
O0O~x2Opd O, OO
OO002000 , and O~
O oO0ObO~200,
O O O
odd O
HN]N O ood
~Xn1 ~Xn2
UO~xnOpOO0
Loddpdd
Odd~nO0 ~
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where yi L1 Uy, yim, yir L1, and xi 2 Cxij ,Xijm,Xir L, for i=1,2,...,n, and j=1,2,...,p.

The least squares estimator of B in model (44), for triangular fuzzy variables, can be formalized as
follows:

O 0 OXi0O0X O X X O XeOX: AP OX00O0Y1 O X OYm O XY O,

(45)
where,

XU Oxin O 3 0, Xm P Oxigm O 35 O, X+ H Oxie O %5 O, are (nxp) left, middle, and right fuzzy matrices
of

predictors. Yi L0y, yat,..., yni L, Y L0 yim, Yom,e.., yam O, Ye OO yar, yor,..., yar [, are (nx1) response
vectors such that:

yil [ xin [y O xi21 002 .. .0 xipt Cp, for i=1,2,...,n yim O Xim[: O Xiem[o O...00 X jpm0p , for
i=1,2,...n

Vir i1 O xior o O O X ipeClp, fori=1,2,...,n

The least squares estimator of 3 in model (44), for trapezoidal fuzzy variables, can be formalized as
follows:

OO0 OxiO0X O XuOXw O XoOXoO X:OX:- OB OX 0 O XuOYe d XoOYoO X:OY: O, (46)
where,

X1 H0xi U O, Xo P Oxije O 3 O, Xo B0xio0s O, Xe O Oxiie O %5 0, are (nxp) left, middle left,
middle right, and right fuzzy matrices of predictors. Y1 10y, yai,..., yn O, Yo OO0y,
Vau,..., ynu L1 , Yo O Oyio, yo0,..., yno, Y OOyar, yor,..., yar [, are (nx1) response vectors such that:

yil O xiilllJ1 O xi2l2 [O...Ofor

xipllp, i=1,2,...,n
yiu [ xitu 1 O xizu2 O... xfor
ipullp, i=1,2,...,n
yil O xiidO0O1 O xiz20O2for
L...0xipOCp i=1,2,...,n
yir [ xi1r[d1 O xier[d2 O...00 xfor
iprllp, i=1,2,...,n

3.4.2 Multivariate Fuzzy Linear Regression Models for Crisp Predictors and Fuzzy
Parameters

Consider the case of fuzzy simple linear regression models defined in (23), the multiple fuzzy regression
model can be generalized as follows:

~yi 0 ~o OO~ xin OO ~oxie O... 00~ pxip LI 0;. (333)
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Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:

~

Y O XO O, (44)

where, Y is an (nx1) fuzzy vector , X is an (nxp) matrix of p crisp predictors, and [ is a (px1) vector of
unknown p fuzzy parameters. As a result of the lack of linearity of Fc IR P [, U~ is reduced to a non-
FRV 0. (See Gonzalez-

Rodriguez et al. (2009)).

Y, X, [, and Clare formalized in matrix form as follows:

U~ y1d [ x11 x12 O Ox1Op0 O0~1 O 0010

Y~ O OO~y200,X 000 x21 x22 O0OxeOpOdOdd , O~ OOOO~2 OO , and OO
O0O0200,

O 000 O O O ] O0Ood 0OadO O OO0

O~ynOO O0O0O xn1xn2 O0OxnOpO00 OOO0OO~p OOO OOOnOO

I where ~yi 1 Olyi, yim, yir 1, and O~ ;8 OO, Oim, O O, for i=1,2,...,n, and j=1,2,...,p.

The least squares estimator U" of U~ in model (44), for triangular fuzzy variables, can be formalized as
follows: (1" O OOO"1,0"m ,O0%r O,

where,

OhO OXOXOEOxXOdy: O, (45)

O'w O OXOXOBP\OXOY w O, OO0 OXOXOP OXOAY - O, where,

X OyO%x—0, and Y1 0Oy, yai ..., yar L, Ym OO yim, yom ye.., yom O, Ye O Oyar, yor,..., yor L, are
(nx1)

response vectors such that: yi O xi:[u O xi2021 O1...00 xipCp1, for i=1,2,...,0 yim O XiOim O Xi2Com
L...0 x ipOpm, fori=1,2,....,n yir 1 xi i O X202 0.0 x 5pCpr, fori=1,2,...,n

The least squares estimator of [lin model (44), for trapezoidal fuzzy variables, can be formalized as
follows:

O 0O00Ot,0%,0%,0% O,

where,

OhO OXOXOP:OxOy: O,

OO OXOXOB OXAYe O,

O'w O OXOXOB:OXAOYy O

O 0O OXOXOB:OxXAy.: O.

3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy
Parameters

Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression
model can be generalized as follows:
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~yi 0~o OO ~1~xin 0 ~2~xi2 ... 0 ~p~x ip LI 05

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:

~ ~~

Y O XxOOod, (44)

where, Y is an (nx1) fuzzy vector , X is an (nxp) matrix of p fuzzy predictors, and [ is a (px1) vector of
unknown p fuzzy parameters. As a result of the lack of linearity of F. LIR P [1, U~ is reduced to a non-
FRV . (See Gonzalez-

Rodriguez et al. (2009)).

~ ~ ~

Y, X, [, and Clare formalized in matrix form as follows:

~ ~x11 O ~xalpl] L0~1

Uy.0 O ~x12 0O 0O 0.0

~O0O~y200 ,~x21 0O ~xelpd O , O~0O0O

X~ U0Og ~x22 [0 0OO0OO~2 00, anddd

Y O L N U201,

O oo L HiEln [ L

ot ~ya0O0O0O HiEln HiEln
OO ~xn1 ~xnpO00 (I

~XN2 OO0d~p OO0 OOnld

where ~ yi L1 Oyi, yim, yir O, ~x3 U Oxij Xim,xir L and Oy B O Oy ,Oim , O O, for i=1,2,...,n, and
j=1,2,...,p.

The least squares estimator U” of U~ in model (44), for triangular fuzzy variables, can be formalized as
follows:

O"0O00%,0°m,0%r O,

where,

0h 0 Ox0Ox 00 0xby O, (45)

O"m O OXmO Xm OO 0XmO0Ym(],

O r O OXrOXr OO210XrOYr O,

where,

Xi Op 00, Xm U Oxyjm O 3 0O, X U Oxie O %5 O, are (nxp) left, middle, and right fuzzy
matrices of

predictors. Y1 LI1Clyu, yai,..., yn 1 , Ym D Oyim, yom,..., yam O, Ye DOy, yor,..., yor L, are (nx1) response
vectors such that:

yil O xiillJ1l O xielC2]l 0O...00 for
xiplUpl, i=1,2,...,n
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yim [ xitmUOim [O xizam[l2m for

.0 x ipmOpm, i=1,2,...,n
yir U xiir[1ir O xierer O...00 x for
iprUpr, i=1,2,...,n

~

The least squares estimator of [lin model (44), for trapezoidal fuzzy variables, can be formalized as
follows:
h O OxOxX OB Ox 0y O,
0% O OXuOX, OB OX,0Ye O, O%v O OX vOX v OO10X vOYv O
O 0 OX.O0X . 070X OY: 0.
(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model
All the fuzzy multiple regression models that have been considered in the literature handled the cases
where all the predictors are fuzzy or all are crisp.
In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in
one model called “Mixed Fuzzy Crisp” (MFC) regression model, is proposed.The least squares approach
for the new model is derived based on positive tight data as defined in (3.2) and triangular fuzzy
numbers. Also, the properties of the resulting regression parameters are introduced in two cases: first,
when the parameters are fuzzy, and second when the parameters are crisp.
4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters
Consider the case where the multiple linear regression model concludes some fuzzy and some crisp
predictors. The computations will be done using triangular fuzzy number, and can applied to
trapezoidal one. Assuming centered predictors, the proposed simplest form of multiple model that
contain two predictors, one is crisp and the other is fuzzy, with crisp parameters will be as follows:
~yi L 0xi O 02 x5 LI0S . 47)
~where vi . Oyi, yim, yir (1, and ~xi: 0 OxXi1, Xim, Xir O, for i=1,2,...,n, Xi2 0 OXim, Xim, Xim O , and Oliis
a non-fuzzy
error with mean equal zero. The regression function of model (47) will be as follows:
E(”y \ ~X1,X2) L0y~ x O 0 oxo.
The derivation of the least squares estimators is done by minimizing the squared distances between the
regression model and the regression function as follows:
n n
QU012 OO arg min Ud 2 [C~yi ,[1~xi1 02 xi2 L0 arg min D10 ~yi ,H1~xi1 02 xi2 [12
I:lO,I:ll i1 DO,DI i1
(48)
U arg minL 0 Cn O ~yil O 0Oxill O 01xi2 D2 O 0n O~yim O 01xiim Q02 xi2 D2 C0n O~yir
O Oaxiir O 01xiz H2 O O
Lo ,01 Oifi0r i0dxr O

By differentiating of Eq. (48) with respect to the parameters H;, and L., the following equations are
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obtained: QUUOo,l10000O 2xill On Oyil OOwxill OO2xi20oxitm [Cn  Oyim
U Oixiim O Oexi2 (10 2xitr Cn Oyir OO xiir C02xi2C000 o

OO i ix  ila

n

U 0Oxi1l Oyil O01xial 02 xie2 0O xitm Oyim O 0Oixitm O O2 xiz OO xiir Oyir OOaxioe D02
xi2 L o

ill1

n n n n n n n n n
U010xi21l O0O200xiilx2e O0O10xieim OO200xiimx2 OO10xizir C0O200xiirxe O Oxitlyil
U Oxitmyim O Oxitryir

illn i 0 0O i i 0 i0: i0x

n n n n n n n
O0100xi21l Oxieim Oxizir OO0O2000xi1l x2 OOxiimxe O0Oxiir x2O00O0O00Oxill yil
U Oxitmyim O Oxitr yir, (49)

illh Oili0 0O O il ix il

and,

QU UMo,100 OO0 2xi2ln Hyil 01xillH2xiz2 L1 2xi2ln Hyim HOixitm O 2xiz2 CI0]
oxi2[In Oyir O Oixiir[02xi2 00 O o

OH2 igr ipr io1

n n n

O 0Oxi2Oyil O0OxiilOO2xiz2 OO0 0Oxi2Oyim O Oixiim O O2xiz2 OO OxizOyir O OxiirC O2xiz
UOo

il i1 id1 n n n n n n n
OO Oxialxiz OO 0Oxiimxi2 OO Oxiirxiz (302 Oxize COxiz2 yil O Oxi2 yim O Cxi2 yir
i1 ior igr iol iot il il . (50)

Solving the equations (49) and (50), the least squares estimators, ©",and U", of [, and [ are obtained
1 2 1 2 respectively, as follows:

n n
U Oxi1l yil O xitm yim O xitr yir O O30 Oxiz ]
O 0101 n n i (51)

O0Oxile O xim2 [ xire CO3x1200Cxiz ]
ild1 ildinn
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U 0Oxial yil O xitm yim O xi1r yir OO 10 0xil2 O xime O xire O
O%2 0101 n il (52) =1 0xi2[]

i1

where, yil, yim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, xiil,
xiim, and Xiir are the left, middle, and right i’s value of ~ x1, respectively, for i=1,2,...,n.
n n n n
y- L O Oy Xie O yim Xi2 O yir xi2 /0xi2, and % 00 Oxi O xim O xie 01/0 x50 are the weighted means of
~y and
ildr ild:r ildxr il
~X 1, respectively, using the observations of the crisp predictor x- as weights. All the above results can
be shown for trapezoidal fuzzy data.
4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters
Suppose in model (47) that both the parameters 3: and 2 are triangular fuzzy numbers, the MFC model
will be defined as follows:
~yi O ~1xi L0~ 2x i L0 (53)

where [~ O OOa, ~ ~yi O Oyil, yim, yir O, and ~xi1 O Oxi1l, xitm, xiir O, for i=1,2,...,n, Clim
,Oir O, O2 O 021 ,02m ,O2r O,
Xiz [ Xim, Xim, Xim [, and Ui is a non-fuzzy error with mean equal zero. The regression function of
model (52) will be

as follows:

E(Ny \ ~X1,X2) OO~ x Od0~2x 2.

The derivation of the least squares estimators is done by minimizing the squared distances between the
regression model and the regression function as follows:

n ~~X o~ n

QL0102 O arg~ min~ Ld 2 O~yi 01 i1 2 xi2 [0 arg~ min~ L0 ~yi
J~1~xi1 OO ~2 xi2 [2

01,02 il [O1,02 i1

(54)

L] arg~ min~ U0O0On O~yil 011 xial 021 xiz2 2 O0On O~yim O 0O1m xitm 0 2m xi2
U2 O0On O~yir O0O1r xitr O O2r xi2 2 O O

O,0.0i001i01 i1 O

By differentiating of Eq. (54) with respect to the parameters Uil , Hym ,Uir , and U1, [om,Uor, then
equating the resulting outputs to zero, the least squares estimators, U1l ,H"'ym ,0"yrand U21,H>m B>
r are obtained as follows:

n n n n n n
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O 0Oxi1l yil OO =1l 3l O0Oxi2d O 0Oxiim yim O Oxim ym O Oxiz ] O0Oxiir yir OO xir yr
O0Oxi2
O™l Oi01n n i1 ,Od"mOi01n n idr ,0%1rdi01n nill1 ,

(55)

O0Oxi21] OO x12] O Oxi2] O0xi2im O0Oxi2m O0xi200  O0Oxi2ir OO x12r O Cxi20]
;5 O 1 5 A A s T I 5 S Y '

n n n n n n
OOxial yil OO0 O0Oxi21] O O0xitm yim OO00%1mm O0xizim O OOxiir  yir OOO%1r
O0Oxi21r O

O%21 O i1 n ildr , O2mOild1 n il , O%210ila n idr , (56)
x1] O 0Oxi20 x1m O0Oxi20 x1r O 0Oxi20

(I S | R VI 5

where, yil, yim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, xiil,
Xiim ,

~ X1, respectively, for i=1,2,...,n. and xiir are the left, middle, and right i’s value of

n n

Using the  observations of the crisp predictorx2 as  weight, yl OOOyil xi2
L/0xi2 ,

illr il

n n n n

¥m 2 U Dyim Xi2 L1/ Oxiz - 3 U O Qyirxie [/ O xi2 are the weighted means °fy1, ym, 20d y; respectively. Also,
illh  ixr 0 ilda

n n n n n n

x11 OO Oxi1l O/0Oxi2 , x1m OO Oxiim O/0Oxiz2 , x1r OO Oxitr O /Cxi2 are the weighted means of
x1l, x1m, and

ild1 i0Jxr i0Jr i1 i0r  ild1 x o , respectively. All the above results can be shown for
trapezoidal fuzzy data.

(5) A Simulation Study

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted
to compare the performance of MFC regression model with MF regression one. Two groups of models
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are introduced with two predictors, in the first group MFC and MF models with crisp parameters are
used, and in the second group MFC and MF models with fuzzy parameters are considered as follows:
5.1 First Group

Model (1) MFC  regression model: ~ yi [10i~xin Lo xi2 C10i,  for i=1,2,...,n with the following
left, center, and right models:

yil Oxi1lld1 Oxi22 ,fori=1,2,...,n

yim Oxiim[l1 Oxi2[C2for i=1,2,...,n

yir Oxiird1 Oxiz2[2, fori=1,2,...,n
Model (2) MF regression model: ~yi LJ[1~xi1 [002~xi2 [I0i, with the following left, center,
and right sub-models:
yil Oxiny Oxia1ld2,  for i=1,2,...,n yim Oxim[: Oxiem2, for i=1,2,...,n yir Oxie[: Oxier[d2,  for
1=1,2,...,n
The triangular data set of ~ xi: [ (Xiil, Xiim, Xirr ) and ~Xi2 [J (Xial,, Xiom , Xior ) are generated from the
normal distribution, and repeated 100 times, as follows:
x 1~N(0.5,2), X 1m~N(1,2), X 1+ ~N(2,4).

The error term is supposed to distribute as normal with mean zero and variance one, i.e.,[ 1~N(0,1), [1:
=0.5 and [>=1.5.
~ 2
The criterion used to compare the model (1) and model (2) is R, which is defined as:
R~2[010dd.2 O O-~y,yy' OO, (57)

where, d 2[]~y, y"Uis the squared distance between ~y U1 Lyl , yc,yr andy” U Oy"l,y"c, y"r L.
Also, d 2 L~y, ¥[1 is the squared distance between ~y [1 [yl , yc, yr U and ¥L10¥l , 3¢, yr L.

~ 2

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R
criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values
of the left R2

R~ is noted for small sample sizes (n=5). compared to the left MF for all sample sizes. The improve of
the right ~ 2

Generally, the higher values of R are obtained for smaller sample sizes of the two models MF and MFC.

These results prove the validity of the fuzzy regression for vague and small data.
~ 2
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Table (1): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed
fuzzy crisp (MFC) regression model with different sample sizes, n=5,10,20,50,100,200, [ 1:=0.5 and [l-

=1.5.

n=5 | Model | Left Center | Right | n=50 | Model | Left Center | Right
MF 0.9349 | 0.9496 | 0.9581 MF 0.9079 | 0.9415 | 0.9826
MFC 0.9703 | 0.9496 | 0.9895 MFC 0.9567 | 0.9415 | 0.9342

n=10 | Model | Left Center | Right | n=100 | Model | Left Center | Right

MF 0.9634 | 0.9936 | 0.9927 MF 0.7296 | 0.9074 | 0.9733
MFC 0.9899 | 0.9936 | 0.9896 MFC 0.9068 | 0.9074 | 0.9363

n=20 | Model | Left Center | Right | n=200 | Model | Left Center | Right
MF 0.8489 | 0.9463 | 0.9771 MF 0.8052 | 0.9201 | 0.9788
MEFC 0.9548 | 0.9463 | 0.9497 MFC 0.9236 | 0.9201 | 0.9409

5.2 Second Group
Model (1) MFC regression model: ~yi L1~ 1~xin LI~ oxi2 L10i, for i=1,2,...,n with the following left,
center, and right models:

yil Oxi1l01] Ox i202l, for
i=1,2,...,n
yim OxiimOim  Oxfor
i2[dom, i=1,2,...,n
yir UxiirU1r Ox i2[2r, for
i=1,2,...,n
Model (2) MF regression model:  ~yi L1~ 1~xi1 OO ~2~xi2 i with the following left, center,
and right models:

yil [ xin[dn O x 21021, for i=1,2,...,n yim OXitm[im OX fomCom, for i=1,2,...,n yir OxirCwr OIX j2r[Cor,
fori=1,2,...,n

The triangular data set of ~ xi: [] (Xi1l, Xiim , Xirr ) and ~Xi2 [ (Xial, Xiom , Xior ) are generated from the
normal distribution, and repeated 100 times, as follows:

x 1~N(0.5,2), X m ~N(1,2), X r~N(2,4).

The error term is supposed to distribute as normal with mean zero and variance one, i.e.,[ 1~N(0,1), ~
0.5,1.0,1.501 and [~ > [J0.5,1.0,1.501. The criterion R~2 is used to compare the MFC and MF regression
models.

0.0 O
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In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the
form of greater values of the left R~ 2 compared to the left MF for all sample sizes. The improve of the
right R~2is noted for
~ 2 small sample sizes (n=5). Generally, the higher values of R are obtained for smaller sample sizes for
the two models MF and MFC. These results prove the validity of the fuzzy regression for small data.

~ 2
Table (2): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed
fuzzy crisp

~

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, [1:[1 [Jo0.5,1.0,1.5] and

~

.[00o.5,1.0,1.501.

n=5 | Model | Left Center | Right | n=50 | Model | Left Center | Right
MF 0.7343 | 0.8700 | 0.9942 MF 0.8233 | 0.0218 | 0.9868
MFC 0.8366 | 0.8700 | 0.9979 MFC 0.8757 | 0.9218 | 0.9742
n=10 | Model | Left Center | Right | n=100 | Model | Left Center | Right
MF 0.9006 | 0.9893 | 0.9947 MF 0.3830 | 0.8864 | 0.9842
MEFC 0.9421 | 0.9893 | 0.9936 MFC 0.5826 | 0.8864 | 0.9815
n=20 | Model | Left Center | Right | n=200 | Model | Left Center | Right
MF 0.6505 | 0.9533 | 0.9910 MF 0.6378 | 0.9083 | 0.9884
MFC 0.8399 | 0.9533 | 0.9887 MFC 0.7392 | 0.9083 | 0.9834

(6) Conclusions

In this paper the simple linear regression model is extended to the multiple one and estimated with the
least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear
regression model, and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model
is evaluated using the extended R~ . Simulated data examples are applied to compare the results of
MFC model with the multiple fuzzy (MF) fuzzy

~ 2regression model using triangular fuzzy numbers. Best results are obtained in the form of larger
values of R of MFC compared to MF especially for small sample sizes. These results support using MFC
model for small data size and for large size of tight data.
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