

# Journal of Artificial Intelligence in Medicine ISSN 3064-7851

Volume 11 Issue 1 January – March 2023 Impact Factor: 6.61

Enquiry: <a href="mailto:contact@continentalpub.online">contact@continentalpub.online</a>

Published by Continental Publication | https://continentalpub.online/index.php/Medial-AI

# METHODS FOR INTEGRATING FUZZY AND CRISP INPUTS IN REGRESSION ANALYSIS

#### Maha Nabil Abdelrahman

Associate Professor of Statistics, Head of the Department of Statistics, Mathematics, and Insurance, Faculty of Commerce, Damanhur University, Egypt

Linear regression models play a crucial role in capturing the linear relationships between response and predictor variables, relying on specific assumptions. These assumptions encompass the availability of sufficient data, the validity of the linear relationship, the exactness of the connection, and the presence of precise data for both variables and coefficients. However, when these assumptions cannot be met, fuzzy regression models provide a practical and flexible alternative. The concept of fuzzy linear regression was initially introduced by Tanaka et al. in 1982 and has since been extended and refined by various researchers. This paper explores the realm of fuzzy regression modeling, tracing its evolution and development through contributions from authors like Tanaka, Lee, Diamond, D'Urso, Yang, Gonzalez-Rodriguez, Choi, Yoon, and Massari. Fuzzy regression offers a robust approach to modeling relationships when traditional linear regression assumptions do not hold, making it a valuable tool in various real-world scenarios.

**Keywords:** Linear regression, fuzzy regression, fuzzy modeling, data relationships, modeling assumptions.

#### Introduction

Linear regression models are used to model the functional relationship between the response and the predictors linearly. This relationship is used for describing and estimating the response variable from predictor variables. Some important assumptions are needed to build a relationship, such as existing enough data, the validity of the linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients. The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled after that by many authors, such as Tanaka and Lee (1988); Tanaka

and Watada (1988); Tanaka et al. (1989); Diamond (1988, 1990, 1992); Diamond and Koener (1997); D'Urso and Gastaldi (2000); Yang and Lin (2002); D'Urso (2003); Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D'Urso and Massari (2013).

Fuzzy regression models have been treated from different points of view depending upon the type of input and output data. There are three different kinds of models:

Vol. 11 No. 1 | Imp. Factor: 6.115

- Crisp input and fuzzy output with fuzzy coefficients.  $\Box$  Fuzzy input and fuzzy output with crisp coefficients.
- Fuzzy input and fuzzy output with fuzzy coefficients.

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988, 1990, 1992)).

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated data are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF regression model.

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables (FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression models will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced in section (4). Section (5) considers the numerical applications using generated and real data examples. The concluding remarks will be discussed in section (6).

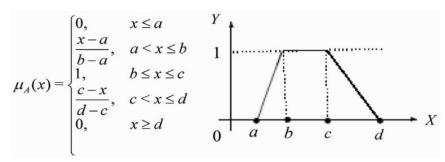
#### **Mathematical Preliminaries**

Some definitions and notes will be presented in this section for the requirements of this work.

### 2.1 Sets Representation of Fuzzy Numbers

| Let $K_c \square R^p \square$ denotes the class of all non-empty compact intervals of $R^p$ and let $F_c \square R^p \square$ denotes th                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class of all fuzzy numbers of $R^p$ . Then, $F_c \square R^p \square$ will be defined as follows:                                                                                              |
| $F_{c} \square R^{p} \square \square \square A: R^{p} \square \square 0, 1 \square \mid A_{\square} \square K_{c} \square R^{p} \square \square \square \square 0, 1 \square \square, \tag{1}$ |
| Where $A_{\square}$ is the $\alpha$ -cut set of A if $\square \square \square 0$ , $1\square$ , and $A_0$ is called the support of A. (Zadeh, 1975).                                           |
| For a given A, $B \square Fc \square R \square$ , and $b \square R$ , the followings hold:                                                                                                     |
| • The sum of A and B is called the Minkowski sum, defined as: $S \square A \square B \square F_c \square R \square$ . (Zadeh, 1975)                                                            |
| • The scalar product of b and the set A is defined as: $P \square b \square A \square F_c \square R \square$ . (Zadeh, 1975).                                                                  |
| • A fuzzy number $D \square F_c \square R \square$ is called the Hukuhara difference of A and B defined as: $D \square A \square$                                                              |
| B , it is shown that the Hukuhara difference is the inverse operation of addition $\square$ , where $A\square B\square I$                                                                      |
| .(Zadeh,                                                                                                                                                                                       |

### 2.2 Left and Right (L-R) Representation of Fuzzy Numbers


Let  $A \in T(R)$  is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of  $F_c(R)$ . A trapezoidal fuzzy number A is defined as  $A = Tra(A_l, A_u, A_v, A_r)$ , where  $A_l \in R$  and  $A_r \in R$  are the left and right limits of the trapezoidal fuzzy number A, respectively. Also  $A_u \in R$  and  $A_v \in R$  are the left and right middle points of A, respectively, as shown in Figure (1). When

 $A_u = A_v = A_m$ , a fuzzy number A will be a triangular, i.e.,  $A=Tri(A_l,A_m,A_r)$ , as shown in Figure (2) If  $A_l=a$ ,  $A_u=b$ ,  $A_v=c$ , and  $A_r=d$ , a stylized representation of a trapezoidal fuzzy number A can be represented in the following L-R form:

• A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure (1)):

Copyright: © 2023 Continental Publication

1975).



### Figure (1): Trapezoidal Fuzzy Number.

• When c=b, a triangular fuzzy number A is specified by a shape function with the following membership (Figure (2)):

 $\mu_{A}(x) = \begin{cases} 0, & x \leq a & Y \\ \frac{x-a}{b-a}, & a < x \leq b & 1 \\ 1, & x = b \\ \frac{c-x}{c-b}, & b < x \leq c \\ 0, & x \geq c. \end{cases}$ 

# Figure (2): Triangular Fuzzy Number 2.3 Metrics in Fuzzy Numbers Space

To measure the distance between any two fuzzy numbers A, and B in  $F_c \square R \square$ , an extended version of the Euclidean (L<sub>2</sub>) distance ( $d_E \square A.B \square$ ) is defined by:  $d_{E^2}\square A,B\square\square\square_{o^1}\square A_L\square\square\square\square\square B_L\square\square\square\square^2 d\square\square\square_{o^1}\square A_U\square\square\square\square\square B_U\square\square\square^2 d\square,$ (4) where  $A_L \square \square \square$  and  $A_U \square \square \square$  are the lower and upper  $\square$ -cuts of a fuzzy number A. (Grzegorzewski, 1998). Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as:  $d^2 \square A, B \square \square \square_{\square 0,1} \square mid \square A_{\square} \square mid \square B_{\square} \square^2 d \square \square \square_{\square 0,1} \square Spr \square A_{\square} \square \square Spr \square B_{\square} \square^2 d \square,$ (5) $A \square U \square A \square L A \square U \square A \square L$ where mid  $\Box A_{\Box} \Box \Box$  denotes the midpoint of  $A_{\Box}$ , and spr  $\Box A_{\Box} \Box \Box$  denotes the spread (or radius) 2 of  $A_{\square}$ ,  $\square \square \square \square 0$ ,  $1\square$ .  $A_{\square}^{U}$  and  $A_{\square}^{L}$  denote the upper bound and lower bound of A, respectively. The Hausdroff dH  $\square$ A,B $\square$  metric for A, B $\square$ Fc  $\square$ R $\square$  is given by:  $d_H \square A, B \square \square \max \square \inf A \square \inf B$ ,  $\sup A \square \sup B \square$ , where infA is the infimum value of A, and | supA is the supremum value of A. The d p  $\square$ A,B $\square$  metric for A, B $\square$ Fc  $\square$ R $\square$ , and 1 $\square$  p $\square$  $\square$  is given by: 1  $1_{-|} \quad p \square p \ d_p \square A B \square \square \square \inf A \square \inf B \square \sup A \square \sup \square,$  $\Box_1$ (7).  $\square 2$ 2 where infA and supA are the infimum and supremum values of A, respectively. (See Vitale, 1985).

The distance between fuzzy numbers can be defined as the distance between their membership

functions. The distance  $d_p \square A, B \square$  between the two fuzzy numbers A,B is given by:

| <b>1</b>                                                                                                                                                                                                    |                                                              |                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|
| $d p \square A, B \square \square \square \square A \square \square B p dm \square p$ ,                                                                                                                     | for $1\square p\square\square$ ,                             | (8)                                                       |
| X                                                                                                                                                                                                           | _                                                            |                                                           |
| and                                                                                                                                                                                                         |                                                              |                                                           |
| $d_p \square A, B \square \square$ essential $\sup \square_A \square x \square \square \square_B \square x \square$                                                                                         | for $p\Box\Box$ ,                                            | (9)                                                       |
| $X\square X$                                                                                                                                                                                                |                                                              |                                                           |
| where $X \square \square$ is a Lebesgue measurable set, m is                                                                                                                                                |                                                              |                                                           |
| The membership functions of two fuzzy number                                                                                                                                                                |                                                              | nce between them is zero, i.e.,                           |
| $d_p \square A, B \square \square O \square \square_A \square x \square \square \square_B \square x \square$                                                                                                | $\Box x \Box \Box X \Box E \Box$ ,                           |                                                           |
| If the two functions d <sub>1</sub> and d <sub>2</sub> defined such that:                                                                                                                                   |                                                              |                                                           |
| where $X_F$ is a fuzzy set and $X=\{x_1,x_2,,x_n\}$ is a f                                                                                                                                                  | uzzy random variable (FR                                     | V), and A,B $\sqcup$ X $_{\rm F}$ .                       |
| Then:                                                                                                                                                                                                       |                                                              |                                                           |
| $ \begin{array}{c c} n & & \\ & d_1 \square A, B \square \square \square_A \square x_i \square \square \end{array} $                                                                                        | l                                                            | (10)                                                      |
| $i\Box 1$                                                                                                                                                                                                   | IB □Xi □ ,                                                   | (10)                                                      |
| and                                                                                                                                                                                                         |                                                              |                                                           |
| n                                                                                                                                                                                                           |                                                              |                                                           |
| $d_2 \square A, B \square \square \square \square_A \square x_i \square \square \square_B \square x_i \square \square^2,$                                                                                   |                                                              | (11)                                                      |
| $i\Box 1$                                                                                                                                                                                                   |                                                              |                                                           |
| Are called fuzzy distances. (Rudin, 1984).                                                                                                                                                                  |                                                              |                                                           |
| , y , y , y , y , y , y , y , y , y , y                                                                                                                                                                     |                                                              |                                                           |
| The FRVs used in this paper are considered a                                                                                                                                                                | as functions from a proba                                    | ability space $(\Omega, \mathbf{A}, \mathbf{P})$ into the |
| metric _                                                                                                                                                                                                    | -                                                            |                                                           |
| space $(F_c(R),d_\theta)$ , where $\theta>0$ . The sample mean                                                                                                                                              | X <sub>n</sub> and sample variance                           | □□²,n of the FRV X are defined                            |
| by:                                                                                                                                                                                                         | •                                                            |                                                           |
| 1 –                                                                                                                                                                                                         |                                                              |                                                           |
| $X_{n} \square \square X_{1} \overline{\square} X_{2} \square \square X_{n} \square,$                                                                                                                       | (12) n                                                       |                                                           |
| 1                                                                                                                                                                                                           |                                                              |                                                           |
| and _                                                                                                                                                                                                       |                                                              |                                                           |
| and $\_$ $\square$                                                                                                | (13)                                                         |                                                           |
| $\square$ 2,n $\square$ 1n $\square$ i $\square$ n 1 d $\square$ 2 $\square$ Xi, X n $\square$ .                                                                                                            |                                                              |                                                           |
| $\square$ $\square$ 2,n $\square$ 1n $\square$ i $\square$ n 1 d $\square$ 2 $\square$ $\square$ Xi, $\square$ X n $\square$ .  If $\square$ X and $\square$ Y are two FRVs , then the Bertoluzza $\square$ | ovariance between them is                                    |                                                           |
|                                                                                                                                                                                                             | ovariance between them is                                    | s defined as:<br>(14)                                     |
|                                                                                                                                                                                                             | ovariance between them is<br>□,                              | (14)                                                      |
|                                                                                                                                                                                                             | ovariance between them is<br>□,                              | (14)                                                      |
|                                                                                                                                                                                                             | ovariance between them is<br>□,                              | (14)                                                      |
|                                                                                                                                                                                                             | ovariance between them is<br>□,                              | (14)                                                      |
|                                                                                                                                                                                                             | ovariance between them is<br>□,<br>]Xi □□□mid□□Yi □□I<br>_ – | (14)<br>□d□□□□0,1□ mid□□X n                               |
|                                                                                                                                                                                                             | ovariance between them is<br>□,<br>]Xi □□□mid□□Yi □□I<br>_ – | (14)                                                      |

## (3) Fuzzy Linear Regression Models

### 3.1 The Standard Linear Regression Models

| Consider the following standard simple linear regressi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion model:                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $Y_i \square \square_0 \square \square_1 X_i \square \square_i$ , $i=1,2,,n$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (16)                                                                             |
| where $\square_0$ , and $\square_1$ are unknown parameters, X is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | predictor, Y is the response variable and $\square$ is the                       |
| error term of the model, with $E \square \square \setminus X \square \square$ o and find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ite variance. The least squares estimators of $\square_0$ ,                      |
| and □₁are obtained by minimizing the sum of squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | error criterion, Q, as follows:                                                  |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| $Q \square arg^{min} \square \square Y_i \square \square_0 \square \square_1 X_1 \square^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (17)                                                                             |
| $\square_0,\square_1$ i $\square_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| The resulting estimators denoted by bo, and b1 are as f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | follows:                                                                         |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| $\square \square x_i y_i \square \square n xy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  |
| $b_1 \square^{i\square 1_n}$ , and $b_0 \square y \square b_1 x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (18)                                                                             |
| in , unaso = y = shi v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (10)                                                                             |
| □xi2 □n <del>x</del> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| i□1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| The multiple linear regression model is one:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| $Y \square X \square \square \square$ , (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
| where Y is an $(n \times 1)$ column vector of the dependent v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ariable. V is an (n×n) matrix of predictors. B is a                              |
| $(p\times 1)$ vector of unknown parameters to be estimated,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |
| $N(0,\sigma^2I_n)$ . The least squares estimator of $\beta$ , denoted b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (20)                                                                             |
| $b \square \square X \square X \square^{\square_1} X \square Y$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| which is obtained by minimizing the corresponding cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |
| $Q \square \operatorname{argmin} \square Y \square X \square \square \square \square Y \square X \square \square.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (21)                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| 3.2 Simple Fuzzy Linear Regression Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |
| In the case of using fuzzy data, fuzzy regression r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| parameters. Consider the following fuzzy simple linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |
| $^{\sim}y_{i}$ $\square$ $_{0}$ $\square$ $_{1}^{\sim}x_{i}$ $\square$ $_{\sim}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (22)                                                                             |
| $^{\sim}$ y <sub>i</sub> $\square \square \sim_0 \square \square \sim_1 x_i \square \square \sim$ , (23) $^{\sim}$ y <sub>i</sub> $\square \square \sim_0 \square \square \sim_1 \sim_1 x_i \square \square \sim_0 \square \square \sim_1 \sim_1 x_i \square \square \sim_0 \square \square \sim_1 \sim_1 x_i \square \square \sim_0 \square \square \sim_1 x_i \square \square \sim_1 x_i \square \square \sim_0 \square \square \sim_1 x_i \square \square \square \sim_1 x_i \square \square \sim_1 x_i \square \square$ |                                                                                  |
| ~ ~ ~y is a fuzzy where □o ,and□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1, are crisp parameters, x is a crisp variable,                                  |
| □o,and□1are fuzzy parameters,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |
| response variable, ~ x is a fuzzy predictor. As a lack o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f linearity of $F_c \square R$ $p \square$ , $\square \sim$ is reduced to a non- |
| FRV. (See Gonzalez-Rodriguez et al. (2009)).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| The regression functions of models (22), (23), and (24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) will be approximated as follows: ~                                             |
| ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| $E(Y \setminus X) \square \square_0 \square \square_1 X, \qquad (25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |
| ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| Copyright: © 2023 Continental Publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |

|                                                                                                                                                                                                                                                               |                                                              | von 11 noi 1   impi i a                                                                                                             | 0.011                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| $E(Y\setminus X) \ \square \ \square_0 \ \square \ \square_1 X \ ,$                                                                                                                                                                                           | (26)                                                         |                                                                                                                                     |                       |
| $E(Y \setminus X) \square \square_0 \square \square_1 X$ ,                                                                                                                                                                                                    | (27)                                                         |                                                                                                                                     |                       |
| The least squares estimators of the p<br>and trapezoidal fuzzy numbers. The<br>criterion. In this work, the least squared<br>introduced by Diamond (1988) will be<br>3.3 The least Squares Approa<br>Triangular Fuzzy Numbers                                 | ne derivation is appro<br>ares optimization crit<br>be used. | oximated by optimizing the least erion which is an extension version                                                                | squares<br>on of that |
| The least squares estimators of the squares criterion as follows:                                                                                                                                                                                             | parameters in model                                          | (22) are obtained by minimizing                                                                                                     | the least             |
| n $Q \square_0, \square_1 \square \square arg^{min} \square d^2 \square^\sim y_i, \square_0$ $\square_0, \square_1 \qquad i \square 1$                                                                                                                        | $\square$ $\square$ $_1$ $^{\sim}$ $\mathbf{X}_i$ $\square$  | (28)                                                                                                                                |                       |
| Diamond (1988) showed that there are 1 1 fuzzy number, the objective function 1                                                                                                                                                                               | _                                                            | _                                                                                                                                   | riangular             |
| n $Q \square \square 0, \square 1 \square \square \text{ argmin } \square d 2 \square n$ $\square_0, \square_1 \qquad \text{i} \square 1$ $(29) \text{ n} \qquad \square \text{ arg}^{\min} \square \square \square y_{il} \square \square_0 \square \square$ |                                                              | $\square$ $\square$ 1Xim $\square$ $^2$ $\square$ $\square$ $y$ ir $\square$ $\square$ $_0$ $\square$ $\square$ 1Xir $\square$ $^2$ |                       |
| $\square_0, \square_1$ i $\square_1$<br>By differentiating of Eq. (29) with res                                                                                                                                                                               | spect to the parameter                                       | $\operatorname{rs} \square_1$ and $\square_0$ , and equating the equa                                                               | ations by             |
| zero:    Q           0,   1       2xi1l     n     yi   n                                                                                                                                                                                                      |                                                              |                                                                                                                                     |                       |
|                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                     |                       |
| $\square Q \square \square 0, \square 1 \square \square 2 \square n \square yil \square$<br>$\square \square 0 \square \square 1xi1r \square \square 0$                                                                                                       | ]□0 □□1xi1l □□ 2[                                            | ]n □yim □□0 □□1xi1m □□ 2[                                                                                                           | □n □yir               |
| □□0 i□1 i□1                                                                                                                                                                                                                                                   |                                                              |                                                                                                                                     |                       |
| The least squares estimators, $b_1\Box$ and $n$                                                                                                                                                                                                               | $\mathrm{d}\mathrm{b}_0\Box$ of $\Box_1$ and $\Box_0$ res    | spectively, are obtained as follows:                                                                                                |                       |

| $\square \square$ xil yil $\square$ xim yim $\square$ xir yir $\square \square 3n xy$                                                                         |                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| b1□ □ i□1 n , (;                                                                                                                                              | 30)                                                                                                                                    |
| $\square$ xil2 $\square$ xim2 $\square$ xir2 $\square$ 3n×2                                                                                                   |                                                                                                                                        |
| i□1                                                                                                                                                           |                                                                                                                                        |
| $b_0 \square \square y \square b_1 \square x$ ,                                                                                                               | (31)                                                                                                                                   |
| where, $y_{il},y_{im},$ and $y_{ir}$ are the left, middle, and right value, and                                                                               | e of $y_i$ , respectively, for $i$ =1,2,, $n$ . Also, $x_{il}$ , $x_{im}$                                                              |
| n                                                                                                                                                             |                                                                                                                                        |
| $x_{ir}$ are the left, middle, and right value of $x_i$ , respectively and                                                                                    | y, for i=1,2,,n. $\underline{y}$ - $\square$ |
| $i\Box 1$ n $\times$ $\Box$                                                                    |                                                                                                                                        |
| i□1                                                                                                                                                           |                                                                                                                                        |
| For the second case, where $\Box$ $\Box$ 0, the objective funct                                                                                               | ion of (28) will be as follows:                                                                                                        |
| 1                                                                                                                                                             |                                                                                                                                        |
| n                                                                                                                                                             |                                                                                                                                        |
| $Q \square \square 0, \square 1 \square \square$ argmin $\square d 2 \square \sim yi, \square o \square \square 1 \sim xi \square$                            |                                                                                                                                        |
| $\square_0, \square_1$ i $\square_1$                                                                                                                          |                                                                                                                                        |
| , (32) n                                                                                                                                                      |                                                                                                                                        |
|                                                                                                                                                               | $0 \sqcup \sqcup_1 Xim \sqcup^2 \sqcup \sqcup Yir \sqcup \sqcup 0 \sqcup \sqcup_1 Xil \sqcup^2 \sqcup$                                 |
| and differentiating of Eq. (32), the least squares estimate obtained as follows:                                                                              | ors, $b_1\Box$ and $b_0\Box$ of $\Box_1$ and $\Box_0$ respectively, are                                                                |
| n                                                                                                                                                             |                                                                                                                                        |
| $\square$ xil yil $\square$ xim yim $\square$ xir yir $\square$ 3n <del>xy</del>                                                                              |                                                                                                                                        |
| $b1 \square i \square 1 n$ , (;                                                                                                                               | 33)                                                                                                                                    |
| □□xil2 □ xim2 □ xir2 □□3n <del>x</del> 2 i□1                                                                                                                  |                                                                                                                                        |
| $b_0 \square y \square b_1 \square x$ .                                                                                                                       | (34)                                                                                                                                   |
| Diamond (1988 [5], 1990[6]) showed that for every fuzz the least squares estimators will be unique if the fuzzy n <b>Definition (3.1)</b>                     | -                                                                                                                                      |
| Consider the fuzzy data sets $\sim y_i \square \square y_{il}$ , $y_{im}$ , $y_{ir} \square$ , and said to be nondegenerated, if not all observations in a se |                                                                                                                                        |

| Definition (3.2)                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consider the fuzzy data sets $\sim y_i \square \square y_{il}$ , $y_{im}$ , $y_{ir} \square$ , and $\sim x_i \square \square x_{il}$ , $x_{im}$ , $x_{ir} \square$ , for i=1,2,,n, the set is                                                                                                      |
| said to be tight if either b1 $\square$ $\square$ o or b1 $\square$ $\square$ o . If b1 $\square$ $\square$ o the data set is said to be tight positive, and                                                                                                                                       |
| if b1 $\square$ 0 the data set is said to be tight negative. (Diamond (1988[5]).                                                                                                                                                                                                                   |
| The least squares estimators of the parameters in model (23) are obtained by minimizing the squared                                                                                                                                                                                                |
| distances between the regression model and the regression function as follows:                                                                                                                                                                                                                     |
| $Q \square \square_{\sim_0}, \square_{\sim_1} \square \square \text{ arg min } \square n \text{ d } 2 \square_{\sim} \text{yi }, \square_{\sim} 0 \square \square_{\sim} 1 \text{xi } \square $ $(35)$                                                                                             |
| $\square_0,\square_1$ i $\square_1$                                                                                                                                                                                                                                                                |
| ~ ~                                                                                                                                                                                                                                                                                                |
| where $\square_0 \square \square_{0l}, \square_{om}, \square_{or} \square$ and $\square_1 \square \square_{1l}, \square_{1m}, \square_{1r} \square$ are two triangular fuzzy numbers.                                                                                                              |
| Eq. (35) can be written as:                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                    |
| Q□o,□1 □ argmin□d                                                                                                                                                                                                                                                                                  |
| $\square$ ~ ~ $\square$ $\square$ $\square$ 2 $\square$ ~yi , $\square$ ~0 $\square$ $\square$ ~1xi $\square$ $\square$ argmin $\square$ $\square$ yil $\square$ $\square$ 0 l $\square$ 1l xi $\square$ 2 $\square$ $\square$ yim $\square$ $\square$ 0 om                                        |
| $\square \square 1 mxi \square 2 \square \square yir \square \square 0r \square \square 1r xi \square 2 \square $ (36)                                                                                                                                                                             |
| $\square_{0},\square_{1}$ i $\square_{1}$ $\square_{0},\square_{1}$                                                                                                                                                                                                                                |
| By differentiating of Eq. (36) with respect to the parameters $\Box$ 1, $\Box$ m, $\Box$ r and $\Box$ ol, $\Box$ om, $\Box$ or, the least                                                                                                                                                          |
| 1 1 1                                                                                                                                                                                                                                                                                              |
| squares estimators, b1l, b1m, b1r and bol, bom, bor are obtained when                                                                                                                                                                                                                              |
| xi ≥ o as follows:                                                                                                                                                                                                                                                                                 |
| n n n                                                                                                                                                                                                                                                                                              |
| $\square \square x_i y_{il} \square \square n x y_l \qquad \square \square x_i y_{im} \square \square n x y_m \qquad \square \square x_i y_{ir} \square \square n x y_r$                                                                                                                           |
| b1l $\square$ i $\square$ 1n , b1m $\square$ i $\square$ 1 n , b1r $\square$ i $\square$ 1n , $\square$ $\square$ x <sub>i</sub> <sup>2</sup> $\square$ $\square$ n <del>x</del> <sup>2</sup> $\square$ $\square$ x <sub>i</sub> <sup>2</sup> $\square$ $\square$ n <del>x</del> <sup>2</sup> (37) |
| $\square \square x_{i^2} \square \square n x^2$ $i \square 1$ $i \square 1$ $i \square 1$                                                                                                                                                                                                          |
| bol $\square$ yl $\square$ b1l x, bol $\square$ yl $\square$ b1l x, .bor $\square$ yr $\square$ b1r x. (38)                                                                                                                                                                                        |
| $001 \square y_1 \square 011 x,  001 \square y_1 \square 011 x,  (30)$                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                    |
| when xi < 0, least squares estimators, b1, b1m, b1r and bol, bom, bor are obtained as follows:                                                                                                                                                                                                     |
| n n                                                                                                                                                                                                                                                                                                |
| $\square \square x_i y_{ir} \square \square n x_y \square \square x_i y_{im} \square \square n x_y \square \square x_i y_{il} \square \square n x_y \square \square x_i y_{il}$                                                                                                                    |
| $h_1 \square_i \square_1 \qquad h_1 \square_i \square_1 \qquad h_2 \square_i \square_2 \qquad (97)$                                                                                                                                                                                                |
| $\square \square x_i^2 \square \square n x^2 \qquad \square \square x_i^2 \square \square n x^2 \qquad \square \square x_i^2 \square \square n x^2$                                                                                                                                                |
| $i\Box 1$ $i\Box 1$ $i\Box 1$                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                    |
| bol □ yl □b1r x-, bom □ ym □b1m x , bor □ yr (38)                                                                                                                                                                                                                                                  |
| $\Box \text{bil} {\mathbf{x}}.$                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                    |

| The least squares estimators of the parameters in model (24) are obtained by minimizing the squared distances between the regression model and the regression function as follows: $ \Box \sim \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| where $\square_{\sim_0}\square_{\circ l_1}\square_{m}$ , $\sim_{\sim_1}\square_{\sim_1}\square_{x_{il}}$ , $x_{im}$ , $x_{ir}\square$ are triangular fuzzy numbers, and $_0\square_{\circ r}\square_{\circ l_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}$ , and $\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square_{\sim_1}\square$ |
| By differentiating of Eq. (40) with respect to the parameters $\Box_1l$ , $\Box_1m$ , $\Box_1r$ and $\Box_{ol}$ , $\Box_{om}$ , $\Box_{or}$ , the least $\sim$ $x_i$ 's and $\Box\sim_1$ are positive fuzzy squares estimators, $b_{1l}$ , $b_{1m}$ , $b_{1r}$ and $b_{ol}$ , $b_{om}$ , $b_{or}$ are obtained as follows when numbers. $n  n  n$ $\Box\Box xil\ yil\ \Box\Box nxl\ yl$ $\Box\Box xil\ yim\ \Box\Box nxm\ ym$ $\Box\Box xir\ yir\ \Box\Box\ nxr\ yr$ $b_1l\ \Box\ i\Box 1\ n$ $b_1m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bol $\square$ yl $\square$ b1r x-l, bom $\square$ ym $\square$ b1m xm, bor $\square$ yr $\square$ b1l xr. (42)<br>The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be easily found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.4 Multivariate Fuzzy Linear Regression Models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp<br>Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression model may be formalized as follows: $ -y_i \square \square_0 \square \square_{1} - x_{i1} \square \square_{2} - x_{i2} \square \square \square_{p} - x_{ip} \square \square_{r} . $ (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Copyright: © 2023 Continental Publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows:                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sim$ $\sim$ $\sim$ , (44)                                                                                                                                                                                                                                                                 |
| $Y \square X \square \square \square \qquad \sim \qquad \sim$                                                                                                                                                                                                                               |
| where, Y is an $(n\times 1)$ vector, X is an $(n\times p)$ matrix of p fuzzy predictors, and $\square$ is a $(p\times 1)$ vector of unknown p crisp parameters. As a result of the lack of linearity of $F_c \square R^p \square$ , $\square \sim$ is reduced to a non FRV $\square$ . (See |
| Gonzalez-Rodriguez et al. (2009)).                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                             |
| Y, X, $\square$ , and $\square$ are formalized in matrix form as follows: $\sim y_1 \square \square$                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                             |
| $Y \sim \square \square \sim y2 \square \square, X \sim$                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
| $\square \sim y_n \square \square \square \square$                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                             |
| ~                                                                                                                                                                                                                                                                                           |
| $\sim$ X11 $\sim$ X12 $\square$ $\square$ $\sim$ X1 $\square$ p $\square$                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
| ~X21 ~X22                                                                                                                                                                                                                                                                                   |
| $\square \neg x2 \square p \square \square$ , $\square \square$                                                                                                                                                                                                                             |
| $\square \square 2 \square \square$ , and $\square \sim$                                                                                                                                                                                                                                    |
| $\square$ $\square$ $\square$ $\square$ $\square$ $\square$                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
| ~xn1                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                             |
| $\square \square \neg n \square \square \sim$                                                                                                                                                                                                                                               |

Volume 1 Issue 1 June 2024

ISSN: Pending...

| where $y_i \square \square y_{il}$ , $y_{im}$ , $y_{ir} \square$ , and $x_{ij} \square \square x_{ij}$ . The least squares estimator of $\beta$ in mo follows: $\square^{\wedge} \square \square X_l \square X_l \square X_m \square X_m \square X_r \square X_r \square (45)$ where, | del (44), for triangular fuzzy variables, can be formalized as                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of predictors. $Y_1 \square \square y_{11}, y_{21},, y_{n1} \square$ , $Y_m \square \square$ vectors such that:                                                                                                                                                                       | $x \square \square x_{ijr} \square x_j \square$ , are $(n \times p)$ left, middle, and right fuzzy matrices $\square y_{1m}, y_{2m},, y_{nm} \square$ , $Y_r \square \square y_{1r}, y_{2r},, y_{nr} \square$ , are $(n \times 1)$ response |
| •                                                                                                                                                                                                                                                                                     | for $i=1,2,,n$ $y_{im} \square x_{i1m}\square_1 \square x_{i2m}\square_2 \square\square x_{ipm}\square_p$ , for                                                                                                                             |
| i=1,2,,n<br>$y_{ir}$ $i_{1r}\square_1\square X_{i2r}\square_2\square\square X_{ipr}\square_p$ ,                                                                                                                                                                                       | for i=1,2,,n                                                                                                                                                                                                                                |
| follows:                                                                                                                                                                                                                                                                              | i=1,2,,n<br>for<br>i=1,2,,n<br>for<br>i=1,2,,n                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                       | Regression Models for Crisp Predictors and Fuzzy                                                                                                                                                                                            |
| <b>Parameters</b> Consider the case of fuzzy simple linear r                                                                                                                                                                                                                          | egression models defined in (23), the multiple fuzzy regression                                                                                                                                                                             |
| model can be generalized as follows:                                                                                                                                                                                                                                                  | -0. 2222 modelo delmod m (-0), me manipie razzy regression                                                                                                                                                                                  |
| $\sim y_i \square \square \sim_0 \square \square \sim_1 X_{i1} \square \square \sim_2 X_{i2} \square \square \square \sim$                                                                                                                                                            | $_{\mathrm{p}}\mathrm{x}_{\mathrm{ip}}\Box\Box_{\mathrm{i}}$ . (333)                                                                                                                                                                        |

Volume 1 Issue 1 June 2024

ISSN: Pending...

### 3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy **Parameters**

Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression model can be generalized as follows:

Volume 1 Issue 1 June 2024

| $\sim\!\!y_i\square\square\sim_0\square\square\sim_1\sim\!\!x_{i1}\square\square\sim_2\sim\!\!x_{i2}\square\square\square\sim_p\sim\!\!x_{ip}\square\square_i.$                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:                                                                                                                                                                                                                                                                                           |
| $Y \square X \square \square \square, \tag{44}$                                                                                                                                                                                                                                                                                                                                                 |
| where, Y is an $(n\times1)$ fuzzy vector, X is an $(n\times p)$ matrix of p fuzzy predictors, and $\square$ is a $(p\times1)$ vector of unknown p fuzzy parameters. As a result of the lack of linearity of $F_c \square R^p \square$ , $\square \sim$ is reduced to a non-FRV $\square$ . (See Gonzalez-Rodriguez et al. (2009)).                                                              |
| Y, X, $\square$ , and $\square$ are formalized in matrix form as follows: $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |
| where $\sim y_i \square \square y_{il}$ , $y_{im}$ , $y_{ir} \square$ , $\sim x_{ij} \square \square x_{ijl}$ , $x_{ijm}$ , $x_{ijr} \square$ and $\square_j \square \square \square_{jl}$ , $\square_{jm}$ , $\square_{jr} \square$ , for $i=1,2,,n$ , and $j=1,2,,p$ . The least squares estimator $\square$ of $\square$ in model (44), for triangular fuzzy variables, can be formalized as |
| follows:                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                 |
| matrices of                                                                                                                                                                                                                                                                                                                                                                                     |
| predictors. $Y_1 \square \square y_{11}, y_{21},, y_{nl} \square$ , $Y_m \square \square y_{1m}, y_{2m},, y_{nm} \square$ , $Y_r \square \square y_{1r}, y_{2r},, y_{nr} \square$ , are $(n \times 1)$ response vectors such that:                                                                                                                                                              |
| yil $\square$ xi1l $\square$ 1l $\square$ xi2l $\square$ 2l $\square$ $\square$ for xipl $\square$ pl, i=1,2,,n                                                                                                                                                                                                                                                                                 |

Volume 1 Issue 1 June 2024

| yim □ xi1m□1m □ xi2m□2m for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square\square$ x ipm $\square$ pm, i=1,2,,n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| yir $\square$ xi1r $\square$ 1r $\square$ xi2r $\square$ 2r $\square$ $\square$ x for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\operatorname{ipr}\Box\operatorname{pr}$ , $\operatorname{i=1,2,,n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The least squares estimator of $\Box$ in model (44), for trapezoidal fuzzy variables, can be formalized as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $igcap_u igcap_u igcap_{X_u} igcap_{X_u} igcap_{Y_u} igcap_{V_u} igcap_{V_u} igcap_{X_v} igcap_{X_v} igcap_{X_v} igcap_{Y_v} igcap_{X_v} igcap_{Y_v} igcap_{X_v} igcap_{X_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| All the fuzzy multiple regression models that have been considered in the literature handled the cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| where all the predictors are fuzzy or all are crisp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| one model called "Mixed Fuzzy Crisp" (MFC) regression model, is proposed. The least squares approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| for the new model is derived based on positive tight data as defined in (3.2) and triangular fuzzy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| numbers. Also, the properties of the resulting regression parameters are introduced in two cases: first,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| when the parameters are fuzzy, and second when the parameters are crisp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Consider the case where the multiple linear regression model concludes some fuzzy and some crisp predictors. The computations will be done using triangular fuzzy number, and can applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trapezoidal one. Assuming centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp and the other is fuzzy, with crisp parameters will be as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $^{\circ}$ |
| $ \text{``where $y_{i}$} \square \square y_{il}, y_{im}, y_{ir} \square, \text{ and $`$x_{i1}$} \square \square x_{i1l}, x_{i1m}, x_{i1r} \square, \text{ for $i$=1,2,,n, $x_{i2}$} \square \square x_{im}, x_{im}, x_{im} \square, \text{ and $\square_{i}$ is } $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a non-fuzzy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| error with mean equal zero. The regression function of model (47) will be as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $E(^{y}\setminus ^{x_1},x_2) \square \square_{1}^{x_1} \square \square_{2}x_2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The derivation of the least squares estimators is done by minimizing the squared distances between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| regression model and the regression function as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $Q \square \square_1, \square_2 \square \square$ arg min $\square d 2 \square \sim yi$ , $\square_1 \sim xi1 \square \square_2 xi2 \square \square$ arg min $\square \square \sim yi$ , $\square_1 \sim xi1 \square \square_2 xi2 \square_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\square_0,\square_1$ i $\square_1$ $\square_0,\square_1$ i $\square_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| □ arg min□□□n □~yil □□1xi1l □□1xi2 □2 □□n □~yim □□1xi1m □□2 xi2 □2 □□n □~yir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\square \square 1xi1r \square \square 1xi2 \square 2 \square \square$ $\square 0, \square 1 \square i \square 1i \square 1 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\Box 0$ , $\Box 1$ By differentiating of Eq. (48) with respect to the parameters $\Box_1$ , and $\Box_2$ , the following equations are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Copyright: © 2023 Continental Publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Volume 1 Issue 1 June 2024

| obtained: $Q \square \square 0, \square 1 \square \square \square$ 2xi1l $\square n$ $\square$ yil $\square \square 1$ xi1l $\square \square 2$ xi2 $\square \square 2$ xi1m $\square n$ $\square$ yim $\square \square 1$ xi1m $\square \square 2$ xi2 $\square \square$ 2xi1r $\square n$ $\square$ yir $\square \square \square 1$ xi1r $\square \square \square 2$ xi2 $\square \square$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n n n n n n n n n n $\square$ \( \sum_{1} \subseteq xi1 \rm 12 \subseteq xi1 \rm xi2 \subseteq \subseteq xi1 \rm xi2 \subseteq \subsete xi1 \rm xi2 \subseteq \subseteq xi1 \rm xi2 \subseteq xi1 \rm xi2 \subseteq xi1 \rm xi2 \subseteq \subseteq xi1 \rm xi2 \subseteq \subseteq xi1 \rm xi2 \subseteq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $i\Box 1  i\Box 1  i\Box 1  i\Box 1  i\Box 1  i\Box 1  i\Box 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n n n n n n n n n $\square$ \  \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| n n n $ \square \exists xi2 \exists yil \square \exists xiil \square \exists xi2 \square \exists xi2 \exists yim \square \exists xiim \square \exists xi2 \square \exists xi2 \exists yir \square \exists xiir \square \exists xi2 \exists yir \square \exists xiir \square \exists$ |
| i□1 i□1 i□1 n n n n n n n n<br>□□1□xi1lxi2 □□1□xi1mxi2 □□1□xi1rxi2 □3□2 □xi22 □□xi2 yil □□xi2 yim □□xi2 yir i□1 i□1 i□1 i□1 i□1 i□1 . (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solving the equations (49) and (50), the least squares estimators, $\Box$ , and $\Box$ , of $\Box$ , and $\Box$ are obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 2 1 2 respectively, as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n n $\Box$ $\Box$ xi1m yim $\Box$ xi1r yir $\Box$ $\Box$ 3*1y $\Box$ $\Box$ xi2 $\Box$ $\Box$ 1 $\Box$ 1 n n i $\Box$ 1 , (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copyright: © 2023 Continental Publication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Volume 1 Issue 1 June 2024

| $\square$ xi1l yil $\square$ xi1m yim $\square$ xi1r yir $\square$ $\square$ $\square$ 1 $\square$ 1 xil2 $\square$ xim2 $\square$ xir2 $\square$ 1 $\square$ 2 $\square$ 1 i $\square$ 1 n i $\square$ 1 , (52) *1 $\square$ 1 $\square$ 1 xi2 $\square$                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{\mathrm{i}\Box_1}$                                                                                                                                                                                                                                                                                                       |
| where, $y_{il}$ , $y_{im}$ , and $y_{ir}$ are the left, middle, and right value of $y_i$ , respectively, for $i$ =1,2,, $n$ . Also, $x_{i1l}$ , $x_{i1m}$ , and $x_{i1r}$ are the left, middle, and right i's value of ~ $x_1$ , respectively, for $i$ =1,2,, $n$ .                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                |
| $i\Box 1$ $i\Box 1$ $i\Box 1$ $i\Box 1$ $i\Box 1$ $x$                                                                                                                                                                                                                                           |
| 4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters                                                                                                                                                                                                                                                    |
| Suppose in model (47) that both the parameters $\beta_1$ and $\beta_2$ are triangular fuzzy numbers, the MFC model will be defined as follows:                                                                                                                                                                                      |
| $ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                              |
| $,\Box 1r \Box, \Box 2 \Box \Box \Box 2l ,\Box 2m ,\Box 2r \Box ,$                                                                                                                                                                                                                                                                  |
| $x_{i2} \square \square x_{im}$ , $x_{im}$ , $x_{im}$ , $x_{im}$ , and $\square_i$ is a non-fuzzy error with mean equal zero. The regression function of                                                                                                                                                                            |
| model (52) will be                                                                                                                                                                                                                                                                                                                  |
| as follows:                                                                                                                                                                                                                                                                                                                         |
| $E(^{y} \setminus ^{x_1}, x_2) \square \square \sim_{1}^{x_1} \square \square \sim_{2} x_2.$                                                                                                                                                                                                                                        |
| The derivation of the least squares estimators is done by minimizing the squared distances between the regression model and the regression function as follows:                                                                                                                                                                     |
| n ~~x ~ n $ \bigcirc \bigcirc$                                                                                                                                                      |
| $\Box -1 \sim xi1 \Box \Box \sim 2 xi2 \Box 2$<br>$\Box 1, \Box 2$ $i \Box 1$ $\Box 1, \Box 2$ $i \Box 1$<br>(54)                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                     |
| By differentiating of Eq. (54) with respect to the parameters $\Box_1 l$ , $\Box_1 m$ , $\Box_1 r$ , and $\Box_2 l$ , $\Box_{2m}$ , $\Box_{2r}$ , then equating the resulting outputs to zero, the least squares estimators, $\Box_1 l$ , $\Box_1 m$ , $\Box_1 r$ and $\Box_2 l$ , $\Box_2 m$ , $\Box_2 r$ are obtained as follows: |
| n  n  n  n  n                                                                                                                                                                                                                                                                                                                       |
| Copyright: © 2023 Continental Publication                                                                                                                                                                                                                                                                                           |

Volume 1 Issue 1 June 2024

| ISSN: | Pending |
|-------|---------|
|-------|---------|

| $\square \square xi1l yil \square \square$<br>$\square \square xi2 \square$         | x1l yl □□xi2□              | $\square$ xi1m yim $\square$ x1m ym $\square$ xi2 $\square$ $\square$ xi1r yir $\square$ *1r yr                                            |
|-------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                     | n i□1                      | , $\Box$ ^1m $\Box$ i $\Box$ 1 n n i $\Box$ 1 , $\Box$ ^1r $\Box$ i $\Box$ 1 n n i $\Box$ 1 ,                                              |
|                                                                                     |                            |                                                                                                                                            |
|                                                                                     |                            | $\square$ xi21m $\square$ x12m $\square$ xi2 $\square$ $\square$ xi21r $\square$ 0 *12r $\square$ 0xi2 $\square$ 1                         |
| n n n<br>□□xi1l yil □□<br>□□xi21r □                                                 | n n<br> □^1l □□xi21l [     | n<br>□□xi1m yim □□□^1m □□xi21m □□□xi1r yir □□□^1r                                                                                          |
| $\square$ ^2l $\square$ i $\square$ 1 n<br>*1l $\square$ $\square$ xi2 $\square$ *1 | •                          | $^2m \square i \square 1$ $n$ $i \square 1$ , $\square ^2l \square i \square 1$ $n$ $i \square 1$ , (56) $*1r \square \square xi2 \square$ |
|                                                                                     |                            |                                                                                                                                            |
| i□1 i□1 i□                                                                          | ]1                         |                                                                                                                                            |
| where, y <sub>il</sub> , y <sub>im</sub> ,                                          | and $y_{ m ir}$ are the le | oft, middle, and right value of $y_i$ , respectively, for i=1,2,,n. Also, $x_{i1l}$ ,                                                      |
| •                                                                                   | ly, for i=1,2,,n.          | and $x_{i1r}$ are the left, middle, and right i's value of                                                                                 |
| n n Using the ob $\square/\square xi2$ , $i\square 1$ $i\square 1$                  | oservations of             | the crisp predictor x2 as weight, $\forall$ l $\Box\Box\Box$ yil xi2                                                                       |
| n n n                                                                               | n                          |                                                                                                                                            |
| $rac{\mathbf{y}_{m}}{i}\square\square \square \mathrm{y}_{im}\mathrm{X}_{i2}l$     |                            | $ y_{ir} x_{i2} \square / \square x_{i2}$ are the weighted means of $y_1$ , $y_m$ , and $y_r$ respectively. Also,                          |
| n  n  n                                                                             | n n                        | n                                                                                                                                          |
|                                                                                     |                            | $\square$ xi1m $\square$ / $\square$ xi2, *1r $\square$ $\square$ xi1r $\square$ / $\square$ xi2 are the weighted means of                 |
| x1l, x1m, and                                                                       |                            |                                                                                                                                            |
|                                                                                     |                            | $i \square 1 \ x_{\ 1r}$ , respectively. All the above results can be shown for                                                            |
| trapezoidal fuzz                                                                    | y data.                    |                                                                                                                                            |

## (5) A Simulation Study

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted to compare the performance of MFC regression model with MF regression one. Two groups of models

Volume 1 Issue 1 June 2024

ISSN: Pending...

| used, and in the sec                                         | two predictors, in the first group MFC and MF models with crisp parameters are ond group MFC and MF models with fuzzy parameters are considered as follows:                                                                                                                        |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1 First Group                                              |                                                                                                                                                                                                                                                                                    |
| Model (1) MFC left, center, and righ                         | regression model: $\sim y_i \square \square_1 \sim x_{i1} \square \square_2 x_{i2} \square \square_i$ , for i=1,2,,n with the following at models:                                                                                                                                 |
|                                                              | yil $\square xi1l \square 1 \square xi2 \square 2$ , for i=1,2,,n                                                                                                                                                                                                                  |
|                                                              | yim □xi1m□1 □xi2□2for i=1,2,,n                                                                                                                                                                                                                                                     |
|                                                              | ,                                                                                                                                                                                                                                                                                  |
|                                                              | yir $\square$ xi1r $\square$ 1 $\square$ xi2 $\square$ 2, for i=1,2,,n                                                                                                                                                                                                             |
| Model (2) MF                                                 | regression model: $\sim$ yi $\square \square 1 \sim$ xi1 $\square \square 2 \sim$ xi2 $\square \square i$ , with the following left, center,                                                                                                                                       |
| and right sub-mode                                           | ls:                                                                                                                                                                                                                                                                                |
| $y_{il} \square x_{i1l} \square_1 \square x_{i2l} \square_2$ | , for $i$ =1,2,, $n$ $y_{im}$ $\square x_{i1m}\square_1$ $\square x_{i2m}\square_2$ , for $i$ =1,2,, $n$ $y_{ir}$ $\square x_{i1r}\square_1$ $\square x_{i2r}\square_2$ , for                                                                                                      |
| i=1,2,,n                                                     |                                                                                                                                                                                                                                                                                    |
|                                                              | a set of $\sim x_{i1} \square (x_{i1l}, x_{i1m}, x_{i1r})$ and $\sim x_{i2} \square (x_{i2l}, x_{i2m}, x_{i2r})$ are generated from the , and repeated 100 times, as follows:                                                                                                      |
| $X_{11} \sim N(0.5,2), X_{1m} \sim 0.00$                     | •                                                                                                                                                                                                                                                                                  |
| The error term is su =0.5 and $\square_2 =1.5$ .             | pposed to distribute as normal with mean zero and variance one, i.e., $\square$ $\sim$ N(0,1), $\square$                                                                                                                                                                           |
|                                                              | o compare the model (1) and model (2) is R , which is defined as:                                                                                                                                                                                                                  |
|                                                              | $d_{22} \square \square \sim_y y, yy^{} \square \square,$ (57)                                                                                                                                                                                                                     |
|                                                              |                                                                                                                                                                                                                                                                                    |
|                                                              | $\square$ is the squared distance between $\sim$ y $\square$ $\square$ yl, yc, yr $\square$ and y^ $\square$ $\square$ y^l, y^c, y^r $\square$ . s the squared distance between $\sim$ y $\square$ $\square$ yl, yc, yr $\square$ and y $\square$ $\square$ yl, yc, yr $\square$ . |
| In Table (1), the mu                                         | ltiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R                                                                                                                                                                                                     |
| ~                                                            |                                                                                                                                                                                                                                                                                    |
|                                                              |                                                                                                                                                                                                                                                                                    |

criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values

of the left R2

 $R_{2}$  is noted for small sample sizes (n=5). compared to the left MF for all sample sizes. The improve of the right  $\sim 2$ 

Generally, the higher values of R are obtained for smaller sample sizes of the two models MF and MFC. These results prove the validity of the fuzzy regression for vague and small data.

 $\sim 2$ 

Volume 1 Issue 1 June 2024 ISSN: Pending...

Table (1): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp (MFC) regression model with different sample sizes, n=5,10,20,50,100,200,  $\square_1$ =0.5 and  $\square_2$ =1.5.

| n=5  | Model | Left   | Center | Right  | n=50  | Model | Left   | Center | Right  |
|------|-------|--------|--------|--------|-------|-------|--------|--------|--------|
|      | MF    | 0.9349 | 0.9496 | 0.9581 |       | MF    | 0.9079 | 0.9415 | 0.9826 |
|      | MFC   | 0.9703 | 0.9496 | 0.9895 |       | MFC   | 0.9567 | 0.9415 | 0.9342 |
|      |       |        |        |        |       |       |        |        |        |
| n=10 | Model | Left   | Center | Right  | n=100 | Model | Left   | Center | Right  |
|      | MF    | 0.9634 | 0.9936 | 0.9927 |       | MF    | 0.7296 | 0.9074 | 0.9733 |
|      | MFC   | 0.9899 | 0.9936 | 0.9896 |       | MFC   | 0.9068 | 0.9074 | 0.9363 |
|      |       |        |        |        |       |       |        |        |        |
| n=20 | Model | Left   | Center | Right  | n=200 | Model | Left   | Center | Right  |
|      | MF    | 0.8489 | 0.9463 | 0.9771 |       | MF    | 0.8052 | 0.9201 | 0.9788 |
|      | MFC   | 0.9548 | 0.9463 | 0.9497 |       | MFC   | 0.9236 | 0.9201 | 0.9409 |

| 5.9         | Sec  | ond | Gro  | nın   |
|-------------|------|-----|------|-------|
| <b>7.</b> ~ | 1766 |     | TI U | ,,,,, |

| <b>5.2 Second Group</b> Model (1) MFC regression model: ~y center, and right models: | $_{i}$ $\square$ $\sim$ $_{1}\sim$ $x_{i1}$ $\square$ $\sim$ $_{2}x_{i2}$ $\square$ $\square$ $\square$ , for i=1,2,,n with the following left,              |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| yil □xi1l□1l □                                                                       | $x i 2 \square 2l$ , for                                                                                                                                     |
| ·                                                                                    | i=1,2,,n                                                                                                                                                     |
| yim □xi1m□                                                                           | lım □xfor                                                                                                                                                    |
| i2□2m ,                                                                              | i=1,2,,n                                                                                                                                                     |
| yir □xi1r□1r □                                                                       | lx i2□2r, for                                                                                                                                                |
| ,                                                                                    | i=1,2,,n                                                                                                                                                     |
| Model (2) MF regression model: and right models:                                     | yi □□~ 1~xi1 □□~2~xi2 □□i with the following left, center,                                                                                                   |
| $y_{il} \square x_{i1l} \square_{1l} \square x_{i2l} \square_{2l}$ , for $i=1,2,,n$  | $n \ y_{im} \square x_{i1m} \square_{1m} \square x_{i2m} \square_{2m}$ , for $i=1,2,,n \ y_{ir} \square x_{i1r} \square_{1r} \square x_{i2r} \square_{2r}$ , |
|                                                                                      | $x_{iil}$ , $x_{iim}$ , $x_{iir}$ ) and $^{\sim}x_{i2}$ $\square$ ( $x_{i2l}$ , $x_{i2m}$ , $x_{i2r}$ ) are generated from the to times, as follows:         |
| $X_{11} \sim N(0.5,2), X_{1m} \sim N(1,2), X_{1r} \sim N(2,4)$                       |                                                                                                                                                              |
|                                                                                      | oute as normal with mean zero and variance one, i.e., $\square \sim N(0,1)$ , $\sim$                                                                         |
|                                                                                      | $5\square$ . The criterion $R_{\sim 2}$ is used to compare the MFC and MF regression                                                                         |
| models.                                                                              |                                                                                                                                                              |
|                                                                                      |                                                                                                                                                              |
|                                                                                      |                                                                                                                                                              |

Volume 1 Issue 1 June 2024

ISSN: Pending...

In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of greater values of the left R~ 2 compared to the left MF for all sample sizes. The improve of the right R~2 is noted for

 $\sim$  2 small sample sizes (n=5). Generally, the higher values of R are obtained for smaller sample sizes for the two models MF and MFC. These results prove the validity of the fuzzy regression for small data.

Table (2): R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200,  $\square_1\square$   $\square 0.5,1.0,1.5\square$  and

 $\square_2\square\square0.5,1.0,1.5\square$ .

| n=5  | Model | Left   | Center | Right  | n=50  | Model | Left   | Center | Right  |
|------|-------|--------|--------|--------|-------|-------|--------|--------|--------|
|      | MF    | 0.7343 | 0.8700 | 0.9942 |       | MF    | 0.8233 | 0.9218 | 0.9868 |
|      | MFC   | 0.8366 | 0.8700 | 0.9979 |       | MFC   | 0.8757 | 0.9218 | 0.9742 |
|      |       |        |        |        |       |       |        |        |        |
| n=10 | Model | Left   | Center | Right  | n=100 | Model | Left   | Center | Right  |
|      | MF    | 0.9006 | 0.9893 | 0.9947 |       | MF    | 0.3830 | 0.8864 | 0.9842 |
|      | MFC   | 0.9421 | 0.9893 | 0.9936 |       | MFC   | 0.5826 | 0.8864 | 0.9815 |
|      |       |        |        |        |       |       |        |        |        |
| n=20 | Model | Left   | Center | Right  | n=200 | Model | Left   | Center | Right  |
|      | MF    | 0.6505 | 0.9533 | 0.9910 |       | MF    | 0.6378 | 0.9083 | 0.9884 |
|      | MFC   | 0.8399 | 0.9533 | 0.9887 |       | MFC   | 0.7392 | 0.9083 | 0.9834 |

### (6) Conclusions

In this paper the simple linear regression model is extended to the multiple one and estimated with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the extended  $R_{\sim 2}$ . Simulated data examples are applied to compare the results of MFC model with the multiple fuzzy (MF) fuzzy

~ 2 regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of R of MFC compared to MF especially for small sample sizes. These results support using MFC model for small data size and for large size of tight data.

#### References

**Arabpour A. R., and Tata M. (2008).** "Estimating the parameters of a fuzzy linear regression model", Iranian Journal of Fuzzy Systems, 5(2), 1-19.

Volume 1 Issue 1 June 2024 ISSN: Pending...

- **Bertoluzza C., Corral N., and Salas A. (1995).** "On a new class of distances between fuzzy sets", Mathware and Soft Computing, 2, 71-84.
- Choi S. H., and Yoon J. H. (2010). "General fuzzy regression using least squares method", International Journal Sys. Sci., 41, 477-485.
- **D'Urso P. (2003).** "Linear regression analysis for fuzzy/crisp inputs and fuzzy/crisp output data", Computational Statistics and Data analysis, 42(1), 47-72.
- **D'Urso P., and Gastaldi T. (2000).** "A least squares approach to fuzzy linear regression analysis", Computational Statistics and Data analysis, 32, 427-440.
- **D'Urso P., and Massari (2013).** "Weighted least squares and least median squares estimation for the fuzzy linear regression analysis", Metron, 71, 279-306.
- Diamond P. (1988). "Fuzzy least squares", Information Sciences, 46, 141-157.
- **Diamond P. (1990).** "Least squares fitting of compact set-valued data", Journal of Mathematical and Applications, 147, 531-544.
- **Diamond P. (1992).** "Least squares and maximum likelihood regression for fuzzy linear models". In: Kacprzyk J. Fuzzy regression analysis. Omnitech Press, Warsaw and Physica-Verlag, Heidelberg, 137-151.
- **Diamond P., and Korner R., (1997).** "Extended fuzzy linear models and least squares estimates", Computer Mathematics Applications, 33, 15-32.
- Gonzalez-Rodriguez, G., Colubi A., and Trutschnig W. (2009). "Simulation of fuzzy random variables", Information Sciences, 179, 642-653.
- **Tanaka H., and Lee H. (1988).** "Interval regression analysis by quadratic programming approach", IEEE Trans. Systems Man Cybrnet., 6(4), 473-481.
- **Tanaka H., and Watada J. (1988).** "Possibilistic linear systems and their application to the linear regression model", Fuzzy sets Syst.27 (3), 275-289.
- **Tanaka H., Havashi I., and Watada J. (1989).** "Possibistic linear regression analysis for fuzzy data", European Journal of Operation Research, 40, 389-396.
- **Tanaka H., Uegima S., and Asai K. (1982).** "Linear regression analysis with fuzzy model", IEEE Trans. Systems Man Cybrnet., 12(6), 903-907.

Volume 1 Issue 1 June 2024 ISSN: Pending...

- Yang M. S., and Lin T. S. (2002). "Fuzzy least-squares linear regression analysis for fuzzy inputoutput data", Fuzzy Sets and Systems, 126, 389-399.
- Yoon J. H., and Choi S. H. (2009). "Componentwise fuzzy linear regression using least General fuzzy regression using least squares estimation", J. Multi.-Valued Logic, 15, 137-153.
- **Yoon J. H., and Choi S. H. (2013).** "Fuzzy least squares estimation with new operations", Advances in Intelligent Systems and Computing, 190, 193-202.
- **Zadeh L. A. (1975).** "The concept of a linguistic variable and its application to approximate reasoning", Part 1, Information Sciences, 8, 199-249, Part 2, Information Sciences, 8, 301-353, Part 3, Information Sciences, 9, 43-80. **Grzegorzewski (1998).** "Metrics and orders in space of fuzzy numbers", Fuzzy Sets and Systems, 97(1), 83-94.
- Klir G., and Yuan B. (1995). "Fuzzy set and fuzzy logic: Theory and applications. Prentice Hall, Englewood Cliffs, NJ.
- **Vitale R. A. (1985).** "Lp Metrics for compact, convex sets", Journal of Approximation Theory, 45, 280-287. **Rudin W. (1984).** Real and complex analysis, McGraw-Hill, New York.