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1 Introduction  

The problems of elastic structures with 

viscoelastic boundary conditions have 

been studied extensively by many 

articles (see References [1]-[5]). 

Motivated by the work on wave and heat 

equations mentioned above, in this 

article we are concerned with an elastic 

thin plate which occupies a bounded 

domain Ω ⊂ ℝ2 with 𝐶2-smooth 

boundary Γ. Assume that , 

where Γ  and Γ  are relatively open 

subsets of Γ Γ0 ≠ ∅ has positive 

boundary measure, and  

is clamped and the memory effect on Γ  

is taken into account, the vertical 

deflection 𝑦(𝑥, 𝑡) of the thin elastic plate 

satisfies the following partial 

differential equation:   

𝑦𝑡𝑡(𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,   

 (1.1a)  

𝑦(𝑥, 𝑡) = ∂𝑣𝑦(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+,   

 (1.1b)  

ℬ1𝑦(𝑥, 𝑡) − ∫0∞ 𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+,  (1.1c)  

ℬ2𝑦(𝑥, 𝑡) + ∫0∞ 𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑢(𝑥, 𝑡),    on    Γ1 × ℝ+,  (1.1d)  

𝑦(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),    (1.1e)  

𝑦(𝑥, −𝑠) = 𝜗(𝑥, 𝑡),    𝑓𝑜𝑟    0 < 𝑠 < ∞,    (1.1f)   
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where  is the relaxation function,  is the boundary control, 𝑦0, 𝑦1, 𝜗 are the given initial conditions. 

ℬ1,ℬ2 are the following boundary operators: 

, 

𝑣 = (𝑣1,𝑣2) is the unit outer normal vector, 𝜏 = (−𝑣2, 𝑣1) is the unit tangent vector, and  is the 

Poisson ratio. 

Throughout the article, we assume always that the function 𝑔(⋅) satisfies the following conditions:   

,∞);  

  𝑔 ′𝑡 < 0,    𝑔′ ′   

∞   
′′′ 𝑡forsome 𝑘 > 

Condition (𝑔2) implies that the memory of the boundary is strictly decreasing and the rate of memory 

loss is also decreasing. From (𝑔2), we have also that both 𝑔(∞  and ′ ∞  exist, 𝑔′(∞) ≥ 0. Condition (𝑔3) 

means that the material behaves like an elastic solid at 𝑡 = ∞. Condition (𝑔4) implies that 𝑔′(𝑡) decays 

exponentially, in particular, 𝑔′(∞) = 0.    

The energy corresponding to the system (1) is defined by   

  

           (1.2)                     

where 𝑎(𝑤) = 𝑎(𝑤, 𝑤) and   

  

          (1.3)  

2. Well-Posen’s of the System with Feedback Control   

In this section, we shall formulate the system (1.1a-1.1f) into a standard linear infinite dimensional 

space with a output feedback control. Let   

𝑊 = {𝑤 ∈ 𝐻2(Ω)|𝑤|Γ0 = ∂𝑣𝑤|Γ0 = 0},   ∥ 𝑤 ∥2𝑊= 𝑎(𝑤),    ∀𝑤 ∈ 𝑊,  

and define the "boundary memory space" by       

∞; |𝑔′( Γ1)),  
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∞  

∥ 𝑧 ∥2𝑍= ′2𝐿2 Γ1 ∥2𝐿2 Γ.  

0 

Set   

ℋ = 𝑊 × 𝐿2(Ω) × 𝑍  

equipped with the inner product induced norm   

.  

It is easy to see that  is a Hilbert space. 

Remark We have that 𝑎(⋅)2 is an equivalent norm on  since Γ0 ≠ ∅ has positive boundary measure.  

Moreover, it is obvious that  is an equivalent norm on 𝐻1(Γ1) . In fact, if  

∂𝑣𝑧 ∥2𝐿2(Γ1) +∥ 𝑧2 ∥2𝐿2(Γ1)= 0, then 𝑧 = ∂𝑣𝑧 = 0 on Γ . It follows that ∇𝑧= 𝑣 ∂𝑣𝑧 = 0 on Γ . Therefore, 𝑧 = 0 

in 𝐻1(Γ1).   

Next, we introduce some operators (Ref.9) as follows: 

(i) We set   

∞ 

𝐿𝑧(𝑠) =𝑔′(𝑠)𝑧(𝑠)d𝑠,  

  𝒜0 = Δ   𝒟(𝒜0) = {𝑤 ∈ 𝐻4(Ω) ∩ 𝑊|ℬ1𝑤|Γ1 = ℬ2𝑤|Γ1 = 0}. 

It is easy to know that 𝒜0 is a positive self-adjoint operator on 𝐿2(Ω .   

(ii) The Green operators 𝑁1 and 𝑁2 are introduced to describe the boundary conditions,   

Δ2𝑕 = 0, in      Ω, 

= ∂ 𝑣𝑕 = 0, on    Γ0,  

  

1𝑕 = 𝑔, on    Γ1, 

2𝑕 = 0, on    Γ1, 

Δ2𝑕 = 0, in      Ω, 

= ∂ 𝑣𝑕 = 0, on    Γ0,  

  

1𝑕 = 0, on    Γ1, 

  2𝑕 = 𝑔, on    Γ1. 

In terms of the regularity theory for the elliptic equations (Ref.6), we see that    
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 . 

  

By these operators defined above, we may rewrite the system (1.1a-1.1f) as    

 𝑦𝑡𝑡(⋅,𝑡) + 𝒜0[𝑦(⋅, 𝑡) − 𝑁1𝐿𝑧(⋅, 𝑡, 𝑠) + 𝑁2𝐿𝑧(⋅, 𝑡, 𝑠) − 𝑁2𝑢(⋅, 𝑡, 𝑠)] = 0,(2.1)  

Where 𝑧(⋅, 𝑡, 𝑠) = 𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠), 𝑥 ∈ Γ  . Considering 𝐿2(Ω  as the pivot space: [𝒟(𝒜0)] ⊂ 𝐿2(Ω) ⊂ 

[𝒟(𝒜0)]′ and extending the 𝒜0 to be 𝒜 0: 𝐿2(Ω) → [𝒟(𝒜0)]′, we can rewrite (4) as   

𝑦𝑡𝑡 (⋅,𝑡) = −𝒜 0𝑦(⋅, 𝑡) + 𝒜 0𝑁1𝐿𝑧(⋅, 𝑡) − 𝒜 0𝑁2𝐿𝑧(⋅, 𝑡) + 𝒜 0𝑁2𝑢(⋅, 𝑡) ∈ [𝒟(𝒜0)]′. (2.2) Thus we 

can write the system (1.1a-1.1f) as a standard form of linear infinite-dimensional system 

in   𝑌 (𝑡) = 𝒜𝑌(𝑡) + 𝐵𝑢 (2.3)  

  Where      

  And      

Finally, a direct computation gives  

  

For all 𝑓 ∈ 𝒟(𝒜0) and 𝑔 ∈ 𝐿2(Γ1). Therefore, 𝑁2∗(𝒜 0)𝑓 = 𝑁2∗𝒜0𝑓 = −𝑓|Γ1, 𝑓 ∈ 𝒟(𝒜0). It follows that   

    

Now, let us consider a feedback control so that the input and output are collocated (Ref.7):   

  𝑢 = −𝑘𝐵∗(𝑦, 𝑦𝑡,𝑧)𝑇 = 𝑘𝑦𝑡|Γ1,    𝑘 ≥ 0. (2.5)  

The closed-loop system under this output feedback then becomes    

𝑦𝑡𝑡(𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,    (2.6a)  

𝑦(𝑥, 𝑡) = ∂𝑣𝑦(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+     (2.6b)  

ℬ1𝑦(𝑥, 𝑡) − ∫0∞ 𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+, (2.6c)  

ℬ2𝑦(𝑥, 𝑡) + ∫0∞ 𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑘𝑦𝑡(𝑥, 𝑡),    on    Γ1 × +,  (2.6d)  
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𝑦(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),   (2.6e)  

𝑦(𝑥, −𝑠) = 𝜗(𝑥, 𝑡).    for    0 < 𝑠 < ∞,   (2.6f)   

The initial boundary problem (2.6) can be written as an evolutionary equation in :   
   

Where 𝑌 = (𝑦, 𝑦𝑡,𝑧), 𝑌0 = (𝑦0, 𝑦1, 𝑦0 − 𝜗) and       

With the domain   

Δ2𝑤 ∈ 𝐿2(Ω),𝑣 ∈ 𝑊∞ , 𝑧(⋅) ∈ 𝐻1(0,∞; |𝑔′(⋅)|; 𝐻1(Γ1)),  

(0) = 0, [ℬ1𝑤 − 𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠]Γ1 = 0,   

0  

∞ 

ℬ 2𝑤 + 𝑔′(𝑠)𝑧(𝑠)d𝑠]Γ1 = 𝑘𝑣|Γ1, 

  0 

Where   

.  

The following theorem ensures that the system (2.6) is well-posed in .  

Theorem 2.1. Assume that the function  satisfies (𝑔1) through (𝑔3) and 𝑘 ≥ 0. Then the operator  

generates a 𝐶𝑜-semigroup 𝑆(𝑡) of contraction on .   

Proof. We first prove that ℛ(𝐼 − 𝒜) = ℋ. Namely, we need to show that the following system of the 

equations   

  𝑤 − 𝑣 = 𝑓,  (2.7a)  

  𝑣 + Δ2𝑤 = 𝑔, (2.7b)  

    (2.7c) has a solution (𝑢, 𝑣, 𝑧) ∈ 𝒟(𝒜) for every (𝑓, 𝑔, 𝑕) ∈ ℋ. In fact, 

it follows from (2.6) that   

  𝑣 = 𝑤 −  ∈ 𝑊,  (2.8a)  

  𝑤 + Δ2𝑤 = 𝑓 + 𝑔 ∈ 𝐿2(Ω),  (2.8b)  

  𝑧(𝑠) = (1 − 𝑒−𝑠)𝑤 + (1 − 𝑒−𝑠)𝑓 + ∫0∞ 𝑒𝜏−𝑠𝑕(𝜏)d𝜏 ∈ 𝑍.  (2.8c)  
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Therefore, Furthermore, by (11b)-(11c) we 

have that for any  

𝑤 ∈ 𝑊 satisfying Δ2𝑤 ∈ 𝐿2(Ω  and ℬ1𝑤 − ∫0 𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠 = 0,ℬ2𝑤 + ∫0 𝑔′(𝑠)𝑧(𝑠)d𝑠 = 𝑘𝑣, it has for all 𝜙 

∈ 𝑊,   

  

  (2.9)  

  

  

Where   

  

And   

  

.  

We see from the Lax-Milgram theorem (Ref.8) that the equation (2.9) admits a unique solution 𝑤 ∈ 𝑊. 

Combining this with (2.8𝑎) and (2.8c), we see that (𝑤, 𝑣, 𝑧) ∈ 𝒟(𝒜) solves the equation (𝐼 − 𝒜)(𝑤, 𝑣, 𝑧) 

= 

(𝑓, 𝑔, 𝑕).   

Next, for any 𝑌 = (𝑤, 𝑣, 𝑧) ∈ 𝒟(𝒜), it has   

ℛ (𝒜𝑌 𝑌) 

  (2.10) . 

Hence  is dissipative. We see from the theorem 1.4.6 of Ref.8 that 𝒟(𝒜) is dense in . Therefore, we 

can conclude by Lumer-Phillips theorem that  generates a 𝐶𝑜-semigroup of contractions on . The 

proof of Theorem  

2.1 is complete now.   □  

3 A Variable Structural Control for the System   

Let us establish a sliding model control for the system (??)   

     

Where  is a bounded linear operator from  to , 𝑤(𝑌, 𝑡) is the control of the system (3.1) that is not 

continuous on the manifold 𝑆 = 𝐶𝑌 = 0, and  is a bounded linear operator with 𝑆 = 𝑆(𝑌) = 𝐶𝑌 ∈ 𝑅𝑛.  

Now, we consider the -neighborhood of sliding mode 𝑆 = 𝐶𝑌 = 0, where 𝛿 > 0 is an arbitrary given 

positive number. Using a continuous control 𝑤 (𝑧, 𝑡) to replace 𝑤(𝑧, 𝑡) in the system 3.1 yields   

    

where𝑌 = ∂𝑌/ ∂𝑡, and the solution of (3.2) belongs to the boundary layer ∥ 𝑆(𝑌) ∥≤ 𝛿  
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Let 𝑆 (𝑌) = 𝐶𝑌 = 0. Applying  to the first equation of (3.1) leads to the following the equivalent control:   

 𝑤𝑒𝑞(𝑌, 𝑡) = −(𝐶𝐵)−1𝐶(𝒜𝑌)  

With assumption that (𝐶𝐵)−1 exists. Substitute 𝑤𝑒𝑞(𝑌, 𝑡) into 3.1 to find   

  𝑌 = [𝐼 − 𝐵(𝐶𝐵)−1𝐶]𝒜𝑌.  (3.3)  

Denote 𝑃 = 𝐵(𝐶𝐵)−1𝐶 and 𝒜0 = (𝐼 − 𝑃)𝒜, then 3.1 becomes   

  𝑌 𝒜 𝑌 𝑌(0) 𝑌 (3.4)  

In the rest part of this paper, we are going to show that the actual sliding mode 𝑍(𝑌) will approach 

uniformly to the ideal sliding mode 𝑍(𝑌) under certain conditions.   

Lemma 3.1 If (𝐶𝐵)−1 is a compact operator and 𝑃𝒜 = 𝒜𝑃 , then 𝒜0 = (𝐼 − 𝑃)𝒜 generates a 𝐶0 - 

Semigroup 𝑇2(𝑡) in  and 𝑇2(𝑡) = (𝐼 − 𝑝)𝑇1(𝑡), where 𝑇1(𝑡) is the 𝐶0-semigroup generated by .   

Proof. Since (𝐶𝐵)−1 is a compact operator,  and  are bounded linear operators, we see from the 

definition of  that  is compact, and therefor the range of 𝐼 − 𝑃 is a closed subspace of . Since 𝑃2 = 𝑃 

and (1 − 𝑃)2 = 𝐼 − 𝑃, 𝐼 − 𝑃 can be viewed as the identity operator on (𝐼 − 𝑃)ℋ. It can be easily seen that 

𝑇2(𝑡) = (𝐼 − 𝑃)𝑇1(𝑡) is a 𝐶0-semigroup in (𝐼 − 𝑃)ℋ.   

Next, we shall prove that the infinitesimal generator of 𝑇2(𝑡) is (𝐼 − 𝑃)𝒜 and 𝒟((𝐼 − 𝑃)𝒜) = (𝐼 − 𝑃)𝒟(𝒜). 

In fact, for every 𝑥 ∈ (𝐼 − 𝑃)𝒟(𝒜), there is a 𝑥1 ∈ 𝒟(𝒜) such that 𝑥 = (𝐼 − 𝑃)𝑥1. It should be noted that 

𝑇1(𝑡) and 𝐼 − 𝑃 are commutative because 𝒜 and 𝑃 are commutative. We see that      

Let 𝒜  be the infinitesimal generator of 𝑇2(𝑡). Since the limit on the left exists, we can assert that 𝑥 ∈ 

𝒟(𝒜 ) and (𝐼 − 𝑃)𝒟(𝒜) ⊆ 𝒟(𝒜 ).  

  

On the other hand, for any 𝑥 ∈ 𝒟(𝒜 ), since 𝒟(𝒜 ) ⊆ (𝐼 − 𝑃)ℋ, there exists 𝑥 ∈ ℋ, such that 𝑥 = (𝐼 − 𝑃)𝑥 

, and   

𝑇   (𝑡) 𝑇 (𝑡)(𝐼 𝑃)( ) (𝐼 𝑃)( ) 

Since the limit of the left hand side exists, and so the limit of the right hand side exists, and 𝑥 ∈ 𝒟(𝒜) 

which implies that 𝒟(𝒜 ) ⊆ (𝐼 − 𝑃)𝒟(𝒜). Thus, 𝒟(𝒜 ) = (𝐼 − 𝑃)𝒟(𝒜)and , the infinitesimal generator 

of 𝑇2(𝑡), is (𝐼 − 𝑃)𝒜.  
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The proof of the lemma is complete.  

Theorem 3.2 Suppose that in the system 3.1,  

1. (𝐶𝐵)−1 exists and it is compact,  2. 

𝑃𝒜 = 𝒜𝑃, where 𝑃 = 𝐵(𝐶𝐵)−1𝐶. 

Then for any solution 𝑌(𝑡) of the system 3.4 satisfying , 

we have   
  

Uniformly on [0, 𝑇] for any positive number .  

Proof. We see from the Theorem 2.1 and Lemma 3.1 that  and 𝒜0 = (𝐼 − 𝑃)𝒜 are infinitesimal 

generators of 𝐶0-semigroups 𝑇1(𝑡) and 𝑇2(𝑡) respectively. It follows from theory of semi group of linear 

operators that there are positive constants 𝑀1,𝑀2,𝜔1 and 𝜔2 such that  

    (3.5)  

In the boundary layer ∥ 𝑇1(𝑡) ∥≤ 𝛿, the equivalent control is   

  𝑤𝑒𝑞(𝑌, 𝑡) = −(𝐶𝐵)−1𝐶𝒜𝑌 + (𝐶𝐵)−1𝐶𝑌   (3.6)  

Substitute (3.6) into (3.1) to find   

  𝑌 = (𝐼 − 𝑃)𝒜𝑌 + 𝑃𝑌  (3.7)  

Hence, the solution of (3.7) can be expressed as follows:   

  ,  (3.8)  

And the solution of (3.4) can be written as   

    (3.9)  

  

Substracting (3.9) from (3.8) yields   

    

Since𝑃𝒜 = 𝒜𝑃, we see that 𝑃𝑇1(𝑡) = 𝑃𝑇1(𝑡). It should be emphasized that (𝐼 − 𝑃)𝑃 = 0 and 𝑇2(𝑡) = (𝐼 − 

𝑃)𝑇1(𝑡), and consequently,   

𝑡   

 𝑇2 

0 

=  

0 = 0  

It can be obtained from (3.10) and (3.5) that   

 ,  

  

Since∥ 𝑌0 − 𝑌0 ∥≤ 𝛿, we have   

.  
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Thus,   

The proof of the theorem is complete.  

We see from the Theorem 3.2 that the actual sliding mode can be approximated by ideal sliding mode 

in any accuracy.   
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